Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets

被引:0
|
作者
Ming-Liang Chen
Jing-Cheng Liu
Jia Zheng
机构
[1] Gannan Normal University,School of Mathematics and Computer Science
[2] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics
[3] Central China Normal University,School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences
来源
关键词
Sierpinski self-affine set; Spectral set; Translational tile; Fuglede’s conjecture; Primary 28A25; 28A80; Secondary 42C05; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let A∈M2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in M_2({\mathbb {Z}})$$\end{document} be an expanding integer matrix and D={d1=0,d2,d3}⊂Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{d_1={\textbf{0}},d_2,d_3\}\subset {\mathbb {Z}}^2$$\end{document}. It follows from Hutchinson (Indiana Univ Math J 30:713–747, 1981) that the generalized Sierpinski self-affine set T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is the unique compact set determined by the pair (A, D) satisfing the set-valued equation AT(A,D)=⋃i=13(T(A,D)+di)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{\textbf{T}}(A,D)=\bigcup _{i=1}^3({\textbf{T}}(A,D)+d_i)$$\end{document}. In this paper, we show that Fuglede’s conjecture holds onT(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document}, which states that T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is a spectral set if and only if T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is a translational tile. For the classical Sierpinski self-affine set T(A,Dc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D_{c})$$\end{document} with Dc={(0,0)t,(1,0)t,(0,1)t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\text {c}}=\{(0,0)^t,(1,0)^t, (0,1)^t\}$$\end{document}, a finer characterization of tiling set is given. As an application, we find that the classical Sierpinski self-affine tile T(A,Dc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D_{\text {c}})$$\end{document} is suitable for Kolountzakis’ conjecture on product domain. This enriches the results that are now known.
引用
收藏
相关论文
共 50 条
  • [21] Non-spectrality of self-affine measures
    Wang, Zhiyong
    Liu, Jingcheng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3723 - 3736
  • [22] A class of self-affine sets and self-affine measures
    Feng, DJ
    Wang, Y
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (01) : 107 - 124
  • [23] Multiscale self-affine Sierpinski carpets
    Gui, Yongxin
    Li, Wenxia
    [J]. NONLINEARITY, 2010, 23 (03) : 495 - 512
  • [24] A Class of Self-Affine Sets and Self-Affine Measures
    De-Jun Feng
    Yang Wang
    [J]. Journal of Fourier Analysis and Applications, 2005, 11 : 107 - 124
  • [25] Generalized dimensions of measures on almost self-affine sets
    Falconer, Kenneth J.
    [J]. NONLINEARITY, 2010, 23 (05) : 1047 - 1069
  • [26] Spectrality of a class of planar self-affine measures with three-element digit sets
    Chen, Yan
    Dong, Xin-Han
    Zhang, Peng-Fei
    [J]. ARCHIV DER MATHEMATIK, 2021, 116 (03) : 327 - 334
  • [27] Spectrality of a class of planar self-affine measures with three-element digit sets
    Yan Chen
    Xin-Han Dong
    Peng-Fei Zhang
    [J]. Archiv der Mathematik, 2021, 116 : 327 - 334
  • [28] Spectrality of a Class of Self-Affine Measures with Prime Determinant
    Yang, Mingshu
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [29] Spectrum of self-affine measures on the Sierpinski family
    Megala, M.
    Prasad, Srijanani Anurag
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 157 - 169
  • [30] Viscous fingering in self-affine Sierpinski carpet
    Tian, JP
    Yao, KL
    [J]. ACTA PHYSICA SINICA, 1999, 48 (02) : 193 - 197