Permutable subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
J. C. Beidleman
John Cossey
R. Esteban-Romero
M. F. Ragland
Jack Schmidt
机构
[1] Universitat de València,Departament d’ Àlgebra
[2] University of Kentucky,Department of Mathematics, 745 Patterson Office Tower
[3] Australian National University,Mathematics Department, Mathematical Sciences Institute
[4] Universitat Politècnica de València,Institut Universitari de Matemàtica Pura i Aplicada
[5] Auburn University Montgomery,Department of Mathematics
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Permutable; subnormal; -group; conjugate-permutable; modular ; -group; Primary 20D10, 20D20, 20D35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups. In particular, it is shown that the finite solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugate-permutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalently, in which every normal subgroup is permutable sensitive. However, there exist finite insolvable groups which are not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups but all subnormal subgroups of defect two are permutable.
引用
收藏
页码:549 / 557
页数:8
相关论文
共 50 条
  • [1] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [2] On σ-subnormal and σ-permutable subgroups of finite groups
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2015, 436 : 1 - 16
  • [3] Sylow permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A
    Esteban-Romero, R
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 727 - 738
  • [4] On Finite Groups with Permutable Generalized Subnormal Subgroups
    Velesnitskii, V. F.
    Semenchuk, V. N.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) : 1720 - 1724
  • [5] On Finite Groups with Permutable Generalized Subnormal Subgroups
    V. F. Velesnitskii
    V. N. Semenchuk
    Ukrainian Mathematical Journal, 2014, 65 : 1720 - 1724
  • [6] Subnormal, permutable, and embedded subgroups in finite groups
    Beidleman, James C.
    Ragland, Mathew F.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (04): : 915 - 921
  • [7] Finite soluble groups with permutable subnormal subgroups
    Alejandre, MJ
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 705 - 722
  • [8] Finite groups with generalized subnormal and generalized permutable subgroups
    Zakrevskaya, Viktoria S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
  • [9] Sylow permutable subnormal subgroups of finite groups II
    Ballester-Bolinches, A
    Esteban-Romero, R
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (03) : 479 - 486
  • [10] Finite groups whose cyclic subnormal subgroups are permutable
    Robinson, DJS
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 171 - 180