Statistical comparison of classifiers through Bayesian hierarchical modelling

被引:0
|
作者
Giorgio Corani
Alessio Benavoli
Janez Demšar
Francesca Mangili
Marco Zaffalon
机构
[1] Università della Svizzera Italiana (USI),Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)
[2] University of Ljubljana,Faculty of Computer and Information Science
来源
Machine Learning | 2017年 / 106卷
关键词
Posterior Probability; Posterior Distribution; Hierarchical Model; Maximum Likelihood Estimator; Equivalent Classifier;
D O I
暂无
中图分类号
学科分类号
摘要
Usually one compares the accuracy of two competing classifiers using null hypothesis significance tests. Yet such tests suffer from important shortcomings, which can be overcome by switching to Bayesian hypothesis testing. We propose a Bayesian hierarchical model that jointly analyzes the cross-validation results obtained by two classifiers on multiple data sets. The model estimates more accurately the difference between classifiers on the individual data sets than the traditional approach of averaging, independently on each data set, the cross-validation results. It does so by jointly analyzing the results obtained on all data sets, and applying shrinkage to the estimates. The model eventually returns the posterior probability of the accuracies of the two classifiers being practically equivalent or significantly different.
引用
收藏
页码:1817 / 1837
页数:20
相关论文
共 50 条
  • [41] Hierarchical Modelling of Data Inherent Structures Using Networks of Fuzzy Classifiers
    Hempel, Arne-Jens
    Bocklisch, Steffen F.
    2008 UKSIM TENTH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, 2008, : 230 - 235
  • [42] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    Petitjean, Francois
    Buntine, Wray
    Webb, Geoffrey I.
    Zaidi, Nayyar
    MACHINE LEARNING, 2018, 107 (8-10) : 1303 - 1331
  • [43] Constrained hierarchical Bayesian model for latent subgroups in basket trials with two classifiers
    Takeda, Kentaro
    Liu, Shufang
    Rong, Alan
    STATISTICS IN MEDICINE, 2022, 41 (02) : 298 - 309
  • [44] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    François Petitjean
    Wray Buntine
    Geoffrey I. Webb
    Nayyar Zaidi
    Machine Learning, 2018, 107 : 1303 - 1331
  • [45] Comparison of three statistical classifiers on a prostate cancer data
    Gelnarová, E
    Safarík, L
    NEURAL NETWORK WORLD, 2005, 15 (04) : 311 - 318
  • [46] Bayesian hierarchical modelling for battery lifetime early prediction
    Zhou, Zihao
    Howey, David A.
    IFAC PAPERSONLINE, 2023, 56 (02): : 6117 - 6123
  • [47] Good modelling practice in ecology, the hierarchical Bayesian perspective
    White, Philip A.
    Gelfand, Alan E.
    Frye, Henry
    Silander Jr, John A.
    ECOLOGICAL MODELLING, 2024, 496
  • [48] Hierarchical Bayesian modelling of rail track geometry degradation
    Andrade, Antonio Ramos
    Teixeira, Paulo Fonseca
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2013, 227 (04) : 364 - 375
  • [49] Bayesian hierarchical response time modelling-A tutorial
    Koenig, Christoph
    Becker, Benjamin
    Ulitzsch, Esther
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2023, 76 (03): : 623 - 645
  • [50] Bayesian hierarchical approach to dual response surface modelling
    Chen, Younan
    Ye, Keying
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (09) : 1963 - 1975