Statistical comparison of classifiers through Bayesian hierarchical modelling

被引:0
|
作者
Giorgio Corani
Alessio Benavoli
Janez Demšar
Francesca Mangili
Marco Zaffalon
机构
[1] Università della Svizzera Italiana (USI),Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)
[2] University of Ljubljana,Faculty of Computer and Information Science
来源
Machine Learning | 2017年 / 106卷
关键词
Posterior Probability; Posterior Distribution; Hierarchical Model; Maximum Likelihood Estimator; Equivalent Classifier;
D O I
暂无
中图分类号
学科分类号
摘要
Usually one compares the accuracy of two competing classifiers using null hypothesis significance tests. Yet such tests suffer from important shortcomings, which can be overcome by switching to Bayesian hypothesis testing. We propose a Bayesian hierarchical model that jointly analyzes the cross-validation results obtained by two classifiers on multiple data sets. The model estimates more accurately the difference between classifiers on the individual data sets than the traditional approach of averaging, independently on each data set, the cross-validation results. It does so by jointly analyzing the results obtained on all data sets, and applying shrinkage to the estimates. The model eventually returns the posterior probability of the accuracies of the two classifiers being practically equivalent or significantly different.
引用
收藏
页码:1817 / 1837
页数:20
相关论文
共 50 条
  • [21] Temporal Bayesian classifiers for modelling muscular dystrophy expression data
    Tucker, Allan
    't Hoen, Peter A. C.
    Vinciotti, Veronica
    Liu, Xiaohui
    INTELLIGENT DATA ANALYSIS, 2006, 10 (05) : 441 - 455
  • [22] A comparison of backpropagation and statistical classifiers for bird identification
    McIlraith, AL
    Card, HC
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 100 - 104
  • [23] Hierarchical dynamic modelling for individualized Bayesian forecasting
    Yanchenko, Anna K.
    Deng, Di Daniel
    Li, Jinglan
    Cron, Andrew J.
    West, Mike
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (01) : 144 - 164
  • [24] Bayesian Hierarchical Modelling for Tailoring Metric Thresholds
    Ernst, Neil A.
    2018 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), 2018, : 587 - 591
  • [25] Bayesian hierarchical modelling of North Atlantic windiness
    Vanem, E.
    Breivik, O. N.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (03) : 545 - 557
  • [26] Modelling Unexpected Failures with a Hierarchical Bayesian Model
    Zeng, Zhiguo
    Zio, Enrico
    2017 2ND INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS), 2017, : 135 - 139
  • [27] A Bayesian hierarchical modelling for hydropower risk assessment
    Kalinina, A.
    Spada, M.
    Burgherr, P.
    Marelli, S.
    Sudret, B.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 412 - 418
  • [28] On the hierarchical Bayesian modelling of frequency response functions
    Dardeno, T. A.
    Worden, K.
    Dervilis, N.
    Mills, R. S.
    Bull, L. A.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 208
  • [29] Bayesian network modelling of hierarchical composite indicators
    Requejo-Castro, David
    Gine-Garriga, Ricard
    Perez-Foguet, Agusti
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 668 : 936 - 946
  • [30] Hierarchical Bayesian Modelling for Wireless Cellular Networks
    Ustebay, Deniz
    Chuai, Jie
    NETAI'19: PROCEEDINGS OF THE 2019 ACM SIGCOMM WORKSHOP ON NETWORK MEETS AI & ML, 2019, : 76 - 82