Statistical comparison of classifiers through Bayesian hierarchical modelling

被引:0
|
作者
Giorgio Corani
Alessio Benavoli
Janez Demšar
Francesca Mangili
Marco Zaffalon
机构
[1] Università della Svizzera Italiana (USI),Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)
[2] University of Ljubljana,Faculty of Computer and Information Science
来源
Machine Learning | 2017年 / 106卷
关键词
Posterior Probability; Posterior Distribution; Hierarchical Model; Maximum Likelihood Estimator; Equivalent Classifier;
D O I
暂无
中图分类号
学科分类号
摘要
Usually one compares the accuracy of two competing classifiers using null hypothesis significance tests. Yet such tests suffer from important shortcomings, which can be overcome by switching to Bayesian hypothesis testing. We propose a Bayesian hierarchical model that jointly analyzes the cross-validation results obtained by two classifiers on multiple data sets. The model estimates more accurately the difference between classifiers on the individual data sets than the traditional approach of averaging, independently on each data set, the cross-validation results. It does so by jointly analyzing the results obtained on all data sets, and applying shrinkage to the estimates. The model eventually returns the posterior probability of the accuracies of the two classifiers being practically equivalent or significantly different.
引用
收藏
页码:1817 / 1837
页数:20
相关论文
共 50 条
  • [31] A Comparison Study of Bayesian Classifiers on Web Pages Classification
    Rongfang Bie
    Zengmei Fu
    Qiurui Sun
    Chuanliang Chen
    New Generation Computing, 2010, 28 : 161 - 168
  • [32] A Comparison Study of Bayesian Classifiers on Web Pages Classification
    Bie, Rongfang
    Fu, Zengmei
    Sun, Qiurui
    Chen, Chuanliang
    NEW GENERATION COMPUTING, 2010, 28 (02) : 161 - 168
  • [33] Statistical comparison of human growth modelling: Bayesian approaches and out-of-sample criteria
    Assmann, Christian
    ANTHROPOLOGISCHER ANZEIGER, 2011, 68 (04) : 487 - 487
  • [34] A Comparison Study: Web Pages Categorization with Bayesian Classifiers
    Fu, Zengmei
    Chen, Chuanliang
    Gong, Yunchao
    Bie, Rongfang
    HPCC 2008: 10TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2008, : 789 - +
  • [35] Hierarchical Clustering through Bayesian Inference
    Spytkowski, Michal
    Kwasnicka, Halina
    COMPUTATIONAL COLLECTIVE INTELLIGENCE - TECHNOLOGIES AND APPLICATIONS, PT I, 2012, 7653 : 515 - 524
  • [36] Hierarchical text categorization through a vertical composition of classifiers
    Addis, Andrea
    Armano, Giuliano
    Mascia, Francesco
    Vargm, Eloisa
    AI(ASTERISK)IA 2007: ARTIFICIAL INTELLIGENCE AND HUMAN-ORIENTED COMPUTING, 2007, 4733 : 742 - 748
  • [37] Variance in Bacillus anthracis virulence assessed through Bayesian hierarchical dose-response modelling
    Mitchell-Blackwood, J.
    Gurian, P. L.
    Lee, R.
    Thran, B.
    JOURNAL OF APPLIED MICROBIOLOGY, 2012, 113 (02) : 265 - 275
  • [38] A BAYESIAN HIERARCHICAL MODELLING APPROACH FOR INDIRECT COMPARISON OF RESPONSE OUTCOMES IN HISTOLOGY-INDEPENDENT THERAPIES
    Mackay, E.
    Springford, A.
    Nagamuthu, C.
    Dron, L.
    VALUE IN HEALTH, 2022, 25 (12) : S358 - S359
  • [39] A hierarchical bayesian statistical framework for response time distributions
    Jeffrey N. Rouder
    Dongchu Sun
    Paul L. Speckman
    Jun Lu
    Duo Zhou
    Psychometrika, 2003, 68 : 589 - 606
  • [40] A hierarchical Bayesian statistical framework for response time distributions
    Rouder, JN
    Sun, DC
    Speckman, PL
    Lu, J
    Zhou, D
    PSYCHOMETRIKA, 2003, 68 (04) : 589 - 606