The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class

被引:0
|
作者
Şahsene Altınkaya
Sibel Yalçın
机构
[1] Bursa Uludag University,Department of Mathematics, Faculty of Arts and Science
关键词
(; )-Chebyshev polynomials; Bi-univalent functions; Subordination; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we will define the bi-univalent function class SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document} related to the (p, q)-Chebyshev polynomials. Then we will derive the (p, q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete–Szegö functional for f∈SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document}.
引用
收藏
页码:341 / 348
页数:7
相关论文
共 50 条
  • [31] COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Altinkaya, Sahsene
    Yalcin, Sibel
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 6 (02): : 180 - 185
  • [32] Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (P, Q)-Lucas Polynomial
    Muthaiyan, Elumalai
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 273 - 289
  • [33] Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)
  • [34] Exploring a Special Class of Bi-Univalent Functions: q-Bernoulli Polynomial, q-Convolution, and q-Exponential Perspective
    Shaba, Timilehin Gideon
    Araci, Serkan
    Adebesin, Babatunde Olufemi
    Esi, Ayhan
    SYMMETRY-BASEL, 2023, 15 (10):
  • [35] NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BY (p, q)-DERIVATIVE OPERATOR
    Motamednezhad, Ahmad
    Salehian, Safa
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (02): : 381 - 390
  • [36] LUCAS POLYNOMIALS AND APPLICATIONS TO AN UNIFIED CLASS OF BI-UNIVALENT FUNCTIONS EQUIPPED WITH (P,Q)-DERIVATIVE OPERATORS
    Altinkaya, Sahsene
    Yalcin, Sibel
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 11 (01): : 100 - 108
  • [37] Faber Polynomial Coefficient Bounds for m-Fold Symmetric Analytic and Bi-univalent Functions Involving q-Calculus
    Jia, Zeya
    Khan, Shahid
    Khan, Nazar
    Khan, Bilal
    Asif, Muhammad
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [38] FABER POLYNOMIAL COEFFICIENT ESTIMATES OF BI-UNIVALENT FUNCTIONS CONNECTED WITH THE q-CONVOLUTION
    El-Deeb, Sheza M.
    Bulut, Serap
    MATHEMATICA BOHEMICA, 2022, : 49 - 64
  • [39] Coefficient bounds for certain classes of bi-univalent functions
    Frasin, B. A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (03): : 383 - 389
  • [40] Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials
    Khan, Bilal
    Liu, Zhi-Guo
    Shaba, Timilehin Gideon
    Araci, Serkan
    Khan, Nazar
    Khan, Muhammad Ghaffar
    JOURNAL OF MATHEMATICS, 2022, 2022