The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class

被引:0
|
作者
Şahsene Altınkaya
Sibel Yalçın
机构
[1] Bursa Uludag University,Department of Mathematics, Faculty of Arts and Science
关键词
(; )-Chebyshev polynomials; Bi-univalent functions; Subordination; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we will define the bi-univalent function class SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document} related to the (p, q)-Chebyshev polynomials. Then we will derive the (p, q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete–Szegö functional for f∈SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document}.
引用
收藏
页码:341 / 348
页数:7
相关论文
共 50 条
  • [21] A Certain q-Sălăgean Differential Operator and Its Applications to Subclasses of Analytic and Bi-Univalent Functions Involving (p, p, q )- Chebyshev Polynomial
    Ibrahim, Musthafa
    Khan, Bilal
    Manickam, A.
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 2124 - 2133
  • [22] INITIAL BOUNDS FOR CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY THE (p, q)-LUCAS POLYNOMIALS
    Magesh, N.
    Abirami, C.
    Altinkaya, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 282 - 288
  • [23] COEFFICIENT BOUNDS USING FABER POLYNOMIAL FOR A NEW SUBCLASS OF MEROMORPHIC BI-UNIVALENT
    Janani, Thambidurai
    Yalcin, Sibel
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 851 - 858
  • [24] Coefficient Bounds of a class of Bi-Univalent Functions Related to Gegenbauer Polynomials
    Al-Rawashdeh, Waleed
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (03): : 635 - 642
  • [25] Chebyshev Polynomial Bounded For Analytic And Bi-Univalent Functions With Respect To Symmetric Conjugate Points
    Wanas, Abbas Kareem
    Majeed, Abdulrahman Hameed
    APPLIED MATHEMATICS E-NOTES, 2019, 19 : 14 - 21
  • [26] Initial coefficient bounds for certain class of meromorphic bi-univalent functions
    Zireh, Ahmad
    Salehian, Safa
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 234 - 245
  • [27] Faber Polynomial Coefficient Estimates For a Class of Analytic Bi-Univalent Functions
    Amourah, Ala A.
    SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019), 2019, 2096
  • [28] Bounds for the Second Hankel Determinant of a General Subclass of Bi-Univalent Functions
    Illafe, Mohamed
    Mohd, Maisarah Haji
    Yousef, Feras
    Supramaniam, Shamani
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2024, 9 (05) : 1226 - 1239
  • [29] Certain Inequalities for a General Class of Analytic and Bi-univalent Functions
    Akgul, Arzu
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 14 (01): : 1 - 13
  • [30] The (p, q)-analogue of sigmoid function in the mirror of bi-univalent functions coupled with subordination
    Olatunji, S. O.
    Panigrahi, T.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 953 - 961