The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class

被引:0
|
作者
Şahsene Altınkaya
Sibel Yalçın
机构
[1] Bursa Uludag University,Department of Mathematics, Faculty of Arts and Science
关键词
(; )-Chebyshev polynomials; Bi-univalent functions; Subordination; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we will define the bi-univalent function class SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document} related to the (p, q)-Chebyshev polynomials. Then we will derive the (p, q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete–Szegö functional for f∈SΣη,μp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {S}_{\varSigma }^{\eta ,\mu }\left( p,q\right) $$\end{document}.
引用
收藏
页码:341 / 348
页数:7
相关论文
共 50 条
  • [1] The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class
    Altinkaya, Sahsene
    Yalcin, Sibel
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 341 - 348
  • [2] On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ
    Altinkaya, Sahsene
    Yalcin, Sibel
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03): : 567 - 575
  • [3] (P, Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class
    Akgul, Arzu
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2170 - 2176
  • [4] CHEBYSHEV POLYNOMIAL COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Caglar, Murat
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (12): : 1608 - 1615
  • [5] Initial Coefficient Bounds for a General Class of Bi-Univalent Functions
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    FILOMAT, 2015, 29 (06) : 1259 - 1267
  • [6] Studies on Coefficient Estimates and Fekete-Szego Problem for a Class of Bi-Univalent Functions Associated With (p,q)-Chebyshev Polynomial
    Kavitha, D.
    Dhanalakshmi, K.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (03): : 691 - 697
  • [7] GENERALIZED LAGUERRE POLYNOMIAL BOUNDS FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Panigrahi, Trailokya
    Sokol, Janusz
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (01): : 127 - 140
  • [8] Faber polynomial coefficient bounds for a subclass of bi-univalent functions
    Altnkaya, Sahsene
    Yalcin, Sibel
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 37 - 44
  • [9] COEFFICIENT BOUNDS FOR A GENERAL SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Altinkaya, Sahsene
    Yalcin, Sibel
    MATEMATICHE, 2016, 71 (01): : 89 - 97
  • [10] A new characterization of (P, Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator
    Akgul, Arzu
    Sakar, F. Muge
    AFRIKA MATEMATIKA, 2022, 33 (03)