In this paper, we investigate the domination number, independent domination number, connected domination number, total domination number denoted by γ(Gn),γi(Gn),γc(Gn,γt(Gn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \gamma (G\left( n \right)), \gamma_{i} (G\left( n \right)), \gamma_{c} (G\left( n \right),\gamma_{t} (G\left( n \right)) $$\end{document} respectively for 4-regular graphs of n vertices with girth 3. Here, G(n) denotes the 4-regular graphs of n vertices with girth 3. We obtain some exact values of G(n) for these parameters. We further establish that γiGn=γGnforn≥6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \gamma_{i} \left( {G\left( n \right)} \right) = \gamma \left( {G\left( n \right)} \right)\, {\text{for }} n \ge 6 $$\end{document} and γcGn=γtGn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \gamma_{c} \left(G\left( n \right)\right) = \gamma_{t} \left( {G\left( n \right)} \right) $$\end{document} for n ≥ 6. Nordhaus–Gaddum type results are also obtained for these parameters.