Domination in 4-Regular Graphs with Girth 3

被引:0
|
作者
N. Mohanapriya
S. Vimal Kumar
J. Vernold Vivin
M. Venkatachalam
机构
[1] Bharathiar University,Research & Development Centre
[2] RVS Technical Campus - Coimbatore,Department of Mathematics
[3] Anna University Constituent College,Department of Mathematics, University College of Engineering Nagercoil
关键词
4-regular graph; Girth; Dominating set; Domination number; Nordhaus - Gaddum type results;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the domination number, independent domination number, connected domination number, total domination number denoted by γ(Gn),γi(Gn),γc(Gn,γt(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma (G\left( n \right)), \gamma_{i} (G\left( n \right)), \gamma_{c} (G\left( n \right),\gamma_{t} (G\left( n \right)) $$\end{document} respectively for 4-regular graphs of n vertices with girth 3. Here, G(n) denotes the 4-regular graphs of n vertices with girth 3. We obtain some exact values of G(n) for these parameters. We further establish that γiGn=γGnforn≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{i} \left( {G\left( n \right)} \right) = \gamma \left( {G\left( n \right)} \right)\, {\text{for }} n \ge 6 $$\end{document} and γcGn=γtGn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{c} \left(G\left( n \right)\right) = \gamma_{t} \left( {G\left( n \right)} \right) $$\end{document} for n ≥ 6. Nordhaus–Gaddum type results are also obtained for these parameters.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条
  • [41] Girth and Total Domination in Graphs
    Michael A. Henning
    Anders Yeo
    Graphs and Combinatorics, 2012, 28 : 199 - 214
  • [42] Girth and Total Domination in Graphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2012, 28 (02) : 199 - 214
  • [43] A note on X¯-coloring and Â-coloring 4-regular graphs
    Jooken, Jorik
    arXiv, 1600,
  • [44] Acyclic Edge Coloring of 4-Regular Graphs (II)
    Wang, Weifan
    Ma, Yulai
    Shu, Qiaojun
    Wang, Yiqiao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2047 - 2054
  • [45] SPLIT EULER TOURS IN 4-REGULAR PLANAR GRAPHS
    Couch, P. J.
    Daniel, B. D.
    Guidry, R.
    Wright, W. Paul
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) : 23 - 30
  • [46] The Number of Spanning Trees in 4-Regular Simple Graphs
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [47] 16 Kempe Equivalence of Colorings of 4-regular Graphs
    Liu X.
    Xu J.
    Liu, Xiaoqing (ideal2008@126.com), 1600, Science Press (39): : 1233 - 1244
  • [48] 4-Regular oriented graphs with optimum skew energy
    Chen, Xiaolin
    Li, Xueliang
    Lian, Huishu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2948 - 2960
  • [49] Acyclic Edge Coloring of 4-Regular Graphs (II)
    Weifan Wang
    Yulai Ma
    Qiaojun Shu
    Yiqiao Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2047 - 2054
  • [50] Genus Ranges of 4-Regular Rigid Vertex Graphs
    Buck, Dorothy
    Dolzhenko, Egor
    Jonoska, Natasa
    Saito, Masahico
    Valencia, Karin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):