Domination in 4-Regular Graphs with Girth 3

被引:0
|
作者
N. Mohanapriya
S. Vimal Kumar
J. Vernold Vivin
M. Venkatachalam
机构
[1] Bharathiar University,Research & Development Centre
[2] RVS Technical Campus - Coimbatore,Department of Mathematics
[3] Anna University Constituent College,Department of Mathematics, University College of Engineering Nagercoil
关键词
4-regular graph; Girth; Dominating set; Domination number; Nordhaus - Gaddum type results;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the domination number, independent domination number, connected domination number, total domination number denoted by γ(Gn),γi(Gn),γc(Gn,γt(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma (G\left( n \right)), \gamma_{i} (G\left( n \right)), \gamma_{c} (G\left( n \right),\gamma_{t} (G\left( n \right)) $$\end{document} respectively for 4-regular graphs of n vertices with girth 3. Here, G(n) denotes the 4-regular graphs of n vertices with girth 3. We obtain some exact values of G(n) for these parameters. We further establish that γiGn=γGnforn≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{i} \left( {G\left( n \right)} \right) = \gamma \left( {G\left( n \right)} \right)\, {\text{for }} n \ge 6 $$\end{document} and γcGn=γtGn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{c} \left(G\left( n \right)\right) = \gamma_{t} \left( {G\left( n \right)} \right) $$\end{document} for n ≥ 6. Nordhaus–Gaddum type results are also obtained for these parameters.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条
  • [21] UNIQUENESS OF MAXIMAL DOMINATING CYCLES IN 3-REGULAR GRAPHS AND OF HAMILTONIAN CYCLES IN 4-REGULAR GRAPHS
    FLEISCHNER, H
    JOURNAL OF GRAPH THEORY, 1994, 18 (05) : 449 - 459
  • [22] H-colorings for 4-regular graphs
    Malnegro, Analen A.
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [23] FACTORIZATIONS OF 4-REGULAR GRAPHS AND PETERSENS THEOREM
    KOUIDER, M
    SABIDUSSI, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (02) : 170 - 184
  • [24] On total coloring of 4-regular circulant graphs
    Nigro, Mauro
    Adauto, Matheus Nunes
    Sasaki, Diana
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 315 - 324
  • [25] ON SOME PROPERTIES OF 4-REGULAR PLANE GRAPHS
    HORNAK, M
    JENDROL, S
    JOURNAL OF GRAPH THEORY, 1995, 20 (02) : 163 - 175
  • [26] Distances and Isomorphisms in 4-regular Circulant Graphs
    Donno, Alfredo
    Iacono, Donatella
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [27] Enumeration of labelled 4-regular planar graphs
    Noy, Marc
    Requile, Clement
    Rue, Juanjo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) : 358 - 378
  • [28] Compatible circuit decompositions of 4-regular graphs
    Fleischner, Herbert
    Genest, Francois
    Jackson, Bill
    JOURNAL OF GRAPH THEORY, 2007, 56 (03) : 227 - 240
  • [29] Transformations of Assembly Number for 4-Regular Graphs
    Guterman A.E.
    Kreines E.M.
    Ostroukhova N.V.
    Journal of Mathematical Sciences, 2022, 262 (1) : 11 - 26
  • [30] 4-REGULAR PRIME GRAPHS OF NONSOLVABLE GROUPS
    Kasyoki, Donnie Munyao
    Oleche, Paul Odhiambo
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (03) : 193 - 222