Domination in 4-Regular Graphs with Girth 3

被引:0
|
作者
N. Mohanapriya
S. Vimal Kumar
J. Vernold Vivin
M. Venkatachalam
机构
[1] Bharathiar University,Research & Development Centre
[2] RVS Technical Campus - Coimbatore,Department of Mathematics
[3] Anna University Constituent College,Department of Mathematics, University College of Engineering Nagercoil
关键词
4-regular graph; Girth; Dominating set; Domination number; Nordhaus - Gaddum type results;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the domination number, independent domination number, connected domination number, total domination number denoted by γ(Gn),γi(Gn),γc(Gn,γt(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma (G\left( n \right)), \gamma_{i} (G\left( n \right)), \gamma_{c} (G\left( n \right),\gamma_{t} (G\left( n \right)) $$\end{document} respectively for 4-regular graphs of n vertices with girth 3. Here, G(n) denotes the 4-regular graphs of n vertices with girth 3. We obtain some exact values of G(n) for these parameters. We further establish that γiGn=γGnforn≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{i} \left( {G\left( n \right)} \right) = \gamma \left( {G\left( n \right)} \right)\, {\text{for }} n \ge 6 $$\end{document} and γcGn=γtGn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{c} \left(G\left( n \right)\right) = \gamma_{t} \left( {G\left( n \right)} \right) $$\end{document} for n ≥ 6. Nordhaus–Gaddum type results are also obtained for these parameters.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条
  • [31] Genus Distributions of 4-Regular Outerplanar Graphs
    Poshni, Mehvish I.
    Khan, Imran F.
    Gross, Jonathan L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [32] Sorting by reversals and the theory of 4-regular graphs
    Brijder, Robert
    THEORETICAL COMPUTER SCIENCE, 2017, 701 : 40 - 53
  • [33] Decycling Number of a class of 4-regular graphs
    Wei, Erling
    Liu, Jiangtao
    Ren, Han
    ARS COMBINATORIA, 2018, 139 : 315 - 326
  • [34] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, Burkhard
    Preis, Robert
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (03) : 475 - 498
  • [35] Even cycle decompositions of 4-regular graphs and line graphs
    Markstrom, Klas
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2676 - 2681
  • [36] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, B
    Preis, R
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 524 - 536
  • [37] Tait's flyping conjecture for 4-regular graphs
    Sawollek, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (02) : 318 - 332
  • [38] Lower bounds for the maximum genus of 4-regular graphs
    Zhou, Ding
    Hao, Rongxia
    He, Weili
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (04) : 530 - 537
  • [39] Orthogonal double covers of 4-regular circulant graphs
    Sampathkumar, R.
    Sriram, V.
    UTILITAS MATHEMATICA, 2015, 98 : 85 - 95
  • [40] Maximum independent sets in 3-and 4-regular Hamiltonian graphs
    Fleischner, Herbert
    Sabidussi, Gert
    Sarvanov, Vladimir I.
    DISCRETE MATHEMATICS, 2010, 310 (20) : 2742 - 2749