Domination in 4-Regular Graphs with Girth 3

被引:0
|
作者
N. Mohanapriya
S. Vimal Kumar
J. Vernold Vivin
M. Venkatachalam
机构
[1] Bharathiar University,Research & Development Centre
[2] RVS Technical Campus - Coimbatore,Department of Mathematics
[3] Anna University Constituent College,Department of Mathematics, University College of Engineering Nagercoil
关键词
4-regular graph; Girth; Dominating set; Domination number; Nordhaus - Gaddum type results;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the domination number, independent domination number, connected domination number, total domination number denoted by γ(Gn),γi(Gn),γc(Gn,γt(Gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma (G\left( n \right)), \gamma_{i} (G\left( n \right)), \gamma_{c} (G\left( n \right),\gamma_{t} (G\left( n \right)) $$\end{document} respectively for 4-regular graphs of n vertices with girth 3. Here, G(n) denotes the 4-regular graphs of n vertices with girth 3. We obtain some exact values of G(n) for these parameters. We further establish that γiGn=γGnforn≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{i} \left( {G\left( n \right)} \right) = \gamma \left( {G\left( n \right)} \right)\, {\text{for }} n \ge 6 $$\end{document} and γcGn=γtGn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma_{c} \left(G\left( n \right)\right) = \gamma_{t} \left( {G\left( n \right)} \right) $$\end{document} for n ≥ 6. Nordhaus–Gaddum type results are also obtained for these parameters.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条
  • [1] Domination in 4-Regular Graphs with Girth 3
    Mohanapriya, N.
    Kumar, S. Vimal
    Vivin, J. Vernold
    Venkatachalam, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (02) : 259 - 264
  • [2] SECURE DOMINATION IN 4-REGULAR PLANAR AND NON-PLANAR GRAPHS WITH GIRTH 3
    Parimelazhagan, R.
    Sulochana, V.
    Kumar, S. Vimal
    UTILITAS MATHEMATICA, 2018, 108 : 273 - 282
  • [3] On Domination Number of 4-Regular Graphs
    Hailong Liu
    Liang Sun
    Czechoslovak Mathematical Journal, 2004, 54 : 889 - 898
  • [4] Domination in 4-regular Knodel graphs
    Mojdeh, Doost Ali
    Musawi, S. R.
    Nazari, E.
    OPEN MATHEMATICS, 2018, 16 : 816 - 825
  • [5] On domination number of 4-regular graphs
    Liu, HL
    Sun, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (04) : 889 - 898
  • [6] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [7] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [8] On the AVDTC of 4-regular graphs
    Papaioannou, A.
    Raftopoulou, C.
    DISCRETE MATHEMATICS, 2014, 330 : 20 - 40
  • [9] 4-REGULAR GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    ZHANG, LM
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 691 - 699
  • [10] 3-colorability of 4-regular Hamiltonian graphs
    Fleischner, H
    Sabidussi, G
    JOURNAL OF GRAPH THEORY, 2003, 42 (02) : 125 - 140