b-AM-Dunford-Pettis Operators on Banach lattices

被引:1
|
作者
Baklouti, Hamadi [1 ]
Hajji, Mohamed [2 ]
Moulahi, Radhouene [1 ]
机构
[1] Sfax Univ, Sfax, Tunisia
[2] Kairouan Univ, Kasserine, Tunisia
关键词
Banach lattice; b-Order bounded; Order continuous norm; COMPACT-OPERATORS;
D O I
10.1007/s11785-024-01523-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our research work, we introduce a new class of operators that we call b-AM-Dunford-Pettis operators. Properties of b-AM-Dunford-Pettis operators, the relationship between the b-AM-Dunford-Pettis operators and various classes of operators are investigated. On the other side, our techniques and results will be related to the lattice structure of the b-AM-Dunford-Pettis operators. For instance, it will be proved that under certain conditions, the b-AM-Dunford-Pettis opertors verify the domination properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] KB-operators on banach lattices and their relationships with dunford-pettis and order weakly compact operators
    Bahramnezhad, Akbar
    Azar, Kazem Haghnejad
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2018, 80 (02): : 91 - 98
  • [22] L-DUNFORD-PETTIS AND ALMOST L-DUNFORD-PETTIS SETS IN DUAL BANACH LATTICES
    Ardakani, Halimeh
    Salimi, Manijeh
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (02): : 149 - 161
  • [23] Some results on various types of compactness of weak* Dunford-Pettis operators on Banach lattices
    Nouira, Redouane
    Aqzzouz, Belmesnaoui
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 403 - 414
  • [24] The Schur and (weak) Dunford-Pettis properties in Banach lattices
    Kaminska, A
    Mastylo, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 : 251 - 278
  • [25] Polynomial versions of weak Dunford–Pettis properties in Banach lattices
    Yu Wang
    Zhongrui Shi
    Qingying Bu
    Positivity, 2021, 25 : 1685 - 1698
  • [26] Disjoint Dunford-Pettis-Type Properties in Banach Lattices
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    Miranda, Vinicius C. C.
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 549 - 562
  • [27] ON b-ORDER DUNFORD-PETTIS OPERATORS AND THE b-AM-COMPACTNESS PROPERTY
    Alavizadeh, R.
    Azar, K. H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (01): : 67 - 76
  • [28] STRONG RELATIVELY COMPACT DUNFORD-PETTIS PROPERTY IN BANACH LATTICES
    Ardakani, Halimeh
    Mosadegh, S. M. Sadegh Modarres
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02) : 270 - 280
  • [29] Polynomial versions of weak Dunford-Pettis properties in Banach lattices
    Wang, Yu
    Shi, Zhongrui
    Bu, Qingying
    POSITIVITY, 2021, 25 (05) : 1685 - 1698
  • [30] ON DUNFORD-PETTIS OPERATORS
    SAAB, E
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1982, 25 (02): : 207 - 209