Polynomial versions of weak Dunford–Pettis properties in Banach lattices

被引:0
|
作者
Yu Wang
Zhongrui Shi
Qingying Bu
机构
[1] North China University of Water Resources and Electric Power,Department of Mathematics
[2] Shanghai University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Weak Dunford–Pettis property; Regular homogeneous polynomial; Fremlin tensor product; 46B42; 46B20; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce polynomial versions of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property for Banach lattices. By using Fremlin projective Banach lattice tensor products, we obtain several characterizations of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property in terms of regular homogeneous polynomials on Banach lattices.
引用
收藏
页码:1685 / 1698
页数:13
相关论文
共 50 条
  • [1] Polynomial versions of weak Dunford-Pettis properties in Banach lattices
    Wang, Yu
    Shi, Zhongrui
    Bu, Qingying
    POSITIVITY, 2021, 25 (05) : 1685 - 1698
  • [2] The Schur and (weak) Dunford-Pettis properties in Banach lattices
    Kaminska, A
    Mastylo, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 : 251 - 278
  • [3] Some Properties of Weak * Dunford-Pettis Operators on Banach Lattices
    Boumnidel, S.
    El Kaddouri, A.
    Aboutafail, O.
    Bouras, K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [4] Banach lattices with weak Dunford-Pettis property
    Bouras, Khalid
    Moussa, Mohammed
    World Academy of Science, Engineering and Technology, 2011, 50 : 880 - 884
  • [5] Polynomial versions of almost Dunford-Pettis sets and almost limited sets in Banach lattices
    Shi, Zhongrui
    Wang, Yu
    Bu, Qingying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [6] SOME PROPERTIES OF POSITIVE WEAK DUNFORD-PETTIS OPERATORS ON BANACH LATTICES
    Aqzzouz, Belmesnaoui
    Bourass, Khalid
    DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 817 - 823
  • [7] WEAK AND ALMOST DUNFORD-PETTIS OPERATORS ON BANACH LATTICES
    Aqzzouz, Belmesnaoui
    Bouras, Khalid
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 165 - 179
  • [8] About positive weak Dunford-Pettis operators on Banach lattices
    Moussa, M.
    Bouras, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 891 - 896
  • [9] DOMINATION BY POSITIVE WEAK* DUNFORD-PETTIS OPERATORS ON BANACH LATTICES
    Chen, Jin Xi
    Chen, Zi Li
    Ji, Guo Xing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) : 311 - 318
  • [10] Disjoint Dunford-Pettis-Type Properties in Banach Lattices
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    Miranda, Vinicius C. C.
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 549 - 562