Polynomial versions of weak Dunford–Pettis properties in Banach lattices

被引:0
|
作者
Yu Wang
Zhongrui Shi
Qingying Bu
机构
[1] North China University of Water Resources and Electric Power,Department of Mathematics
[2] Shanghai University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Weak Dunford–Pettis property; Regular homogeneous polynomial; Fremlin tensor product; 46B42; 46B20; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce polynomial versions of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property for Banach lattices. By using Fremlin projective Banach lattice tensor products, we obtain several characterizations of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property in terms of regular homogeneous polynomials on Banach lattices.
引用
收藏
页码:1685 / 1698
页数:13
相关论文
共 50 条
  • [21] Compactness of positive Dunford-Pettis operators on Banach lattices.
    Aqzzouz, B
    Nouira, R
    Zraoula, L
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 37 - 42
  • [22] On the duality problem of positive Dunford-Pettis operators on Banach lattices
    Aqzzouz B.
    Nouira R.
    Zraoula L.
    Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) : 287 - 294
  • [23] ON THE SCHUR, POSITIVE SCHUR AND WEAK DUNFORD-PETTIS PROPERTIES IN FRÉCHET LATTICES
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 633 - 642
  • [24] STRONG RELATIVELY COMPACT DUNFORD-PETTIS PROPERTY IN BANACH LATTICES
    Ardakani, Halimeh
    Mosadegh, S. M. Sadegh Modarres
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02) : 270 - 280
  • [25] Almost L-Dunford-Pettis sets in Banach lattices and its applications
    Retbi, Abderrahman
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 599 - 607
  • [26] AM-compactness of positive Dunford-Pettis operators on banach lattices
    Aqzzouz B.
    Zraoula L.
    Rendiconti del Circolo Matematico di Palermo, 2007, 56 (3) : 305 - 316
  • [27] Semi-compactness of positive Dunford-Pettis operators on banach lattices
    Aqzzouz, Belmesnaoui
    Nouira, Redouane
    Zraoula, Larbi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 1997 - 2006
  • [28] SEMI-COMPACTNESS OF ALMOST DUNFORD-PETTIS OPERATORS ON BANACH LATTICES
    Aqzzouz, Belmesnaoui
    Elbour, Aziz
    DEMONSTRATIO MATHEMATICA, 2011, 44 (01) : 131 - 141
  • [29] ON THE WEAK DUNFORD-PETTIS PROPERTY
    LEUNG, DH
    ARCHIV DER MATHEMATIK, 1989, 52 (04) : 363 - 364
  • [30] A study of reciprocal Dunford-Pettis-like properties on Banach spaces
    Alikhani, Morteza
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 27 - 38