Polynomial versions of weak Dunford–Pettis properties in Banach lattices

被引:0
|
作者
Yu Wang
Zhongrui Shi
Qingying Bu
机构
[1] North China University of Water Resources and Electric Power,Department of Mathematics
[2] Shanghai University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2021年 / 25卷
关键词
Weak Dunford–Pettis property; Regular homogeneous polynomial; Fremlin tensor product; 46B42; 46B20; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce polynomial versions of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property for Banach lattices. By using Fremlin projective Banach lattice tensor products, we obtain several characterizations of the weak Dunford–Pettis property and the weak Dunford–Pettis∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} property in terms of regular homogeneous polynomials on Banach lattices.
引用
收藏
页码:1685 / 1698
页数:13
相关论文
共 50 条
  • [41] A NOTE ON WEAK RECIPROCAL DUNFORD-PETTIS SETS
    Ghenciu, I.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 453 - 463
  • [42] On the class of positive almost weak Dunford–Pettis operators
    Khalid Bouras
    Mohammed Moussa
    Positivity, 2013, 17 : 589 - 600
  • [43] Unbounded absolutely weak Dunford-Pettis operators
    Erkursun Ozcan, Nazife
    Gezer, Niyazi Anil
    Zabeti, Omid
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (06) : 2731 - 2740
  • [44] On the class of weak(star) Dunford-Pettis operators
    El Kaddouri, A.
    H'michane, J.
    Bouras, K.
    Moussa, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2013, 62 (02) : 261 - 265
  • [45] B-WEAK COMPACTNESS OF WEAK DUNFORD-PETTIS OPERATORS
    Aqzzouz, Belmesnaoui
    H'Michane, Jawad
    OPERATORS AND MATRICES, 2013, 7 (01): : 219 - 224
  • [46] The weak compactness of almost Dunford-Pettis operators
    Aqzzouz, Belmesnaoui
    Elbour, Aziz
    Aboutafail, Othman
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (01): : 31 - 35
  • [47] On positive almost weak* Dunford-Pettis operators
    Deng, Yang
    Chen, Zili
    Gao, Niushan
    POSITIVITY, 2016, 20 (02) : 283 - 294
  • [48] THE CLASS OF UAW-WEAK* DUNFORD-PETTIS OPERATORS
    El Kaddouri, A.
    Boumnidel, S.
    Aboutafail, O.
    Bouras, K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (01): : 55 - 64
  • [49] Banach格上的b-Dunford-Pettis算子
    李娇娇
    陈金喜
    陈滋利
    纯粹数学与应用数学, 2017, 33 (05) : 513 - 521
  • [50] ON QUANTITATIVE SCHUR AND DUNFORD-PETTIS PROPERTIES
    Kalenda, Ondrej F. K.
    Spurny, Jiri
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 471 - 486