b-AM-Dunford-Pettis Operators on Banach lattices

被引:1
|
作者
Baklouti, Hamadi [1 ]
Hajji, Mohamed [2 ]
Moulahi, Radhouene [1 ]
机构
[1] Sfax Univ, Sfax, Tunisia
[2] Kairouan Univ, Kasserine, Tunisia
关键词
Banach lattice; b-Order bounded; Order continuous norm; COMPACT-OPERATORS;
D O I
10.1007/s11785-024-01523-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our research work, we introduce a new class of operators that we call b-AM-Dunford-Pettis operators. Properties of b-AM-Dunford-Pettis operators, the relationship between the b-AM-Dunford-Pettis operators and various classes of operators are investigated. On the other side, our techniques and results will be related to the lattice structure of the b-AM-Dunford-Pettis operators. For instance, it will be proved that under certain conditions, the b-AM-Dunford-Pettis opertors verify the domination properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Strong Dunford–Pettis Sets and Spaces of Operators
    Ioana Ghenciu
    Paul W. Lewis
    Monatshefte für Mathematik, 2005, 144 : 275 - 284
  • [42] Duality properties for b-AM-compact operators on Banach lattices
    Cheng, Na
    Chen, Zi-Li
    Chen, Guang-Gui
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 465 - 469
  • [43] ON THE CLASS OF ORDER DUNFORD-PETTIS OPERATORS
    Bouras, Khalid
    El Kaddouri, Abdelmonaim
    H'Michane, Jawad
    Moussa, Mohammed
    MATHEMATICA BOHEMICA, 2013, 138 (03): : 289 - 297
  • [44] Duality properties for b-AM-compact operators on Banach lattices
    Na Cheng
    Zi-Li Chen
    Guang-Gui Chen
    Mathematical Notes, 2013, 93 : 465 - 469
  • [45] B-WEAK COMPACTNESS OF WEAK DUNFORD-PETTIS OPERATORS
    Aqzzouz, Belmesnaoui
    H'Michane, Jawad
    OPERATORS AND MATRICES, 2013, 7 (01): : 219 - 224
  • [46] Some Generalizations on Positive Dunford–Pettis Operators
    Belmesnaoui Aqzzouz
    Khalid Bouras
    Aziz Elbour
    Results in Mathematics, 2009, 54 : 207 - 218
  • [47] On positive almost weak* Dunford–Pettis operators
    Yang Deng
    Zili Chen
    Niushan Gao
    Positivity, 2016, 20 : 283 - 294
  • [48] A NOTE ON THE U-DUNFORD-PETTIS OPERATORS
    Afkir, Farid
    Elbour, Aziz
    QUAESTIONES MATHEMATICAE, 2024,
  • [50] On the Class of U-Dunford-Pettis Operators
    Aboutafail, Othman
    El Fahri, Kamal
    H'Michane, Jawad
    Zraoula, Larbi
    QUAESTIONES MATHEMATICAE, 2022, 45 (04) : 655 - 666