Optimal bounds of classical and non-classical means in terms of Q means

被引:0
|
作者
Monika Nowicka
Alfred Witkowski
机构
[1] UTP University of Science and Technology Institute of Mathematics and Physics,
[2] AUDoMAT,undefined
关键词
Classical means; Seiffert function; Q mean; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We show optimal bounds of the form Qα<M<Qβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\alpha<M<Q_\beta $$\end{document}, where Qα(x,y)=A(x,y)A2(x,y)(1-α)A2(x,y)+αG2(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q_\alpha (x,y)={\mathsf {A}}(x,y)\frac{{\mathsf {A}}^2(x,y)}{(1-\alpha ){\mathsf {A}}^2(x,y)+\alpha {\mathsf {G}}^2(x,y)} \end{aligned}$$\end{document}and M belongs to a broad class of classical homogeneous, symmetric means of two variables.
引用
收藏
相关论文
共 50 条