Optimal bounds of classical and non-classical means in terms of Q means

被引:0
|
作者
Monika Nowicka
Alfred Witkowski
机构
[1] UTP University of Science and Technology Institute of Mathematics and Physics,
[2] AUDoMAT,undefined
关键词
Classical means; Seiffert function; Q mean; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We show optimal bounds of the form Qα<M<Qβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\alpha<M<Q_\beta $$\end{document}, where Qα(x,y)=A(x,y)A2(x,y)(1-α)A2(x,y)+αG2(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q_\alpha (x,y)={\mathsf {A}}(x,y)\frac{{\mathsf {A}}^2(x,y)}{(1-\alpha ){\mathsf {A}}^2(x,y)+\alpha {\mathsf {G}}^2(x,y)} \end{aligned}$$\end{document}and M belongs to a broad class of classical homogeneous, symmetric means of two variables.
引用
下载
收藏
相关论文
共 50 条
  • [21] Optimal bounds for Toader mean in terms of general means
    Zhang, Qian
    Xu, Bing
    Han, Maoan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] Optimal bounds for Toader mean in terms of general means
    Qian Zhang
    Bing Xu
    Maoan Han
    Journal of Inequalities and Applications, 2020
  • [23] Classical and non-classical models of the cochlea
    deBoer, E
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (04): : 2148 - 2150
  • [24] ON CLASSICAL AND NON-CLASSICAL VIEWS ON NUCLEATION
    Gebauer, Denis
    Raiteri, Paolo
    Gale, Julian D.
    Coelfen, Helmut
    AMERICAN JOURNAL OF SCIENCE, 2018, 318 (09) : 969 - 988
  • [25] CLASSICAL AND NON-CLASSICAL DYNAMICS WITH CONSTRAINTS
    VERSHIK, AM
    LECTURE NOTES IN MATHEMATICS, 1984, 1108 : 278 - 301
  • [26] CLASSICAL AND NON-CLASSICAL SCHOTTKY GROUPS
    ZARROW, R
    DUKE MATHEMATICAL JOURNAL, 1975, 42 (04) : 717 - 724
  • [27] What is Classical and Non-Classical Knowledge?
    Slobodanka Vladiv-Glover
    Studies in East European Thought, 2006, 58 : 205 - 238
  • [28] Classical and non-classical creep models
    Altenbach, H
    CREEP AND DAMAGE IN MATERIALS AND STRUCTURES, 1999, (399): : 45 - 95
  • [29] Classical/Non-classical Polyoxometalate Hybrids
    Izarova, Natalya V.
    Santiago-Schuebel, Beatrix
    Willbold, Sabine
    Hess, Volkmar
    Koegerler, Paul
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (45) : 16052 - 16056
  • [30] What is classical and non-classical knowledge?
    Vladiv-Glover, Slobodanka
    STUDIES IN EAST EUROPEAN THOUGHT, 2006, 58 (03) : 205 - 238