Optimal bounds of classical and non-classical means in terms of Q means

被引:3
|
作者
Nowicka, Monika [1 ]
Witkowski, Alfred [2 ]
机构
[1] UTP Univ Sci & Technol, Inst Math & Phys, Al Prof Kaliskiego 7, PL-85796 Bydgoszcz, Poland
[2] AUDoMAT, Ul Mielczarskiego 4-29, PL-85796 Bydgoszcz, Poland
关键词
Classical means; Seiffert function; Q mean; INEQUALITIES;
D O I
10.1007/s13398-021-01145-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show optimal bounds of the form Q(alpha) < M < Q(beta), where Q(alpha)(x, y) = A( x, y) A(2)( x, y)/(1 - alpha)A(2)(x, y) + alpha G(2) (x, y) and M belongs to a broad class of classical homogeneous, symmetric means of two variables.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Optimal bounds of classical and non-classical means in terms of Q means
    Monika Nowicka
    Alfred Witkowski
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [2] Non-classical structural mathematical means and optic
    Sorokin, VK
    Lobanova, LS
    [J]. MMET 2000: INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2000, : 697 - 699
  • [3] Optimal Power Mean Bounds for the Weighted Geometric Mean of Classical Means
    Bo-Yong Long
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2010
  • [4] Optimal Power Mean Bounds for the Weighted Geometric Mean of Classical Means
    Long, Bo-Yong
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [5] Optimal Bounds for Neuman Means in Terms of Harmonic and Contraharmonic Means
    He, Zai-Yin
    Chu, Yu-Ming
    Wang, Miao-Kun
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [6] Non-classical Metatheory for Non-classical Logics
    Bacon, Andrew
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 2013, 42 (02) : 335 - 355
  • [7] Lower Bounds for Non-Classical Eigenvalue Problems
    Camus, Brice
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (01) : 25 - 36
  • [8] Lower Bounds for Non-Classical Eigenvalue Problems
    Brice Camus
    [J]. Integral Equations and Operator Theory, 2016, 85 : 25 - 36
  • [9] Non-classical Metatheory for Non-classical Logics
    Andrew Bacon
    [J]. Journal of Philosophical Logic, 2013, 42 : 335 - 355
  • [10] Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2014