Optimal bounds of classical and non-classical means in terms of Q means

被引:3
|
作者
Nowicka, Monika [1 ]
Witkowski, Alfred [2 ]
机构
[1] UTP Univ Sci & Technol, Inst Math & Phys, Al Prof Kaliskiego 7, PL-85796 Bydgoszcz, Poland
[2] AUDoMAT, Ul Mielczarskiego 4-29, PL-85796 Bydgoszcz, Poland
关键词
Classical means; Seiffert function; Q mean; INEQUALITIES;
D O I
10.1007/s13398-021-01145-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show optimal bounds of the form Q(alpha) < M < Q(beta), where Q(alpha)(x, y) = A( x, y) A(2)( x, y)/(1 - alpha)A(2)(x, y) + alpha G(2) (x, y) and M belongs to a broad class of classical homogeneous, symmetric means of two variables.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Optimal bounds for Toader mean in terms of general means
    Zhang, Qian
    Xu, Bing
    Han, Maoan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] Optimal bounds for Toader mean in terms of general means
    Qian Zhang
    Bing Xu
    Maoan Han
    [J]. Journal of Inequalities and Applications, 2020
  • [23] Classical and non-classical models of the cochlea
    deBoer, E
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (04): : 2148 - 2150
  • [24] ON CLASSICAL AND NON-CLASSICAL VIEWS ON NUCLEATION
    Gebauer, Denis
    Raiteri, Paolo
    Gale, Julian D.
    Coelfen, Helmut
    [J]. AMERICAN JOURNAL OF SCIENCE, 2018, 318 (09) : 969 - 988
  • [25] Classical/Non-classical Polyoxometalate Hybrids
    Izarova, Natalya V.
    Santiago-Schuebel, Beatrix
    Willbold, Sabine
    Hess, Volkmar
    Koegerler, Paul
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (45) : 16052 - 16056
  • [26] What is Classical and Non-Classical Knowledge?
    Slobodanka Vladiv-Glover
    [J]. Studies in East European Thought, 2006, 58 : 205 - 238
  • [27] CLASSICAL AND NON-CLASSICAL SCHOTTKY GROUPS
    ZARROW, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1975, 42 (04) : 717 - 724
  • [28] CLASSICAL AND NON-CLASSICAL DYNAMICS WITH CONSTRAINTS
    VERSHIK, AM
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1108 : 278 - 301
  • [29] Classical and non-classical creep models
    Altenbach, H
    [J]. CREEP AND DAMAGE IN MATERIALS AND STRUCTURES, 1999, (399): : 45 - 95
  • [30] What is classical and non-classical knowledge?
    Vladiv-Glover, Slobodanka
    [J]. STUDIES IN EAST EUROPEAN THOUGHT, 2006, 58 (03) : 205 - 238