Lower Bounds for Non-Classical Eigenvalue Problems

被引:0
|
作者
Brice Camus
机构
[1] Mathematisches Institut,Ludwig Maximilians Universität München
来源
关键词
Schrödinger operator; spectral theory; ground state energy;
D O I
暂无
中图分类号
学科分类号
摘要
Several lower bounds on the ground state energy of Schrödinger operators with non-confining potentials Vα(x)=∏j=1n|xj|αj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_{\alpha}(x) = {\prod_{j=1}^{n}} |x_{j}|^{\alpha_{j}}}$$\end{document}, αj>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_{j} > 0}$$\end{document}, on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb R}^{n}}$$\end{document} are obtained. These results lead to explicit (computable) strictly positive lower bounds and can be generalized to certain ‘product’-potentials.
引用
收藏
页码:25 / 36
页数:11
相关论文
共 50 条
  • [1] Lower Bounds for Non-Classical Eigenvalue Problems
    Camus, Brice
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (01) : 25 - 36
  • [2] NON-CLASSICAL EIGENVALUE ASYMPTOTICS
    SIMON, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 53 (01) : 84 - 98
  • [3] Unified Integral Transforms and Non-Classical Eigenvalue Problems in Heat and Mass Transfer
    Cotta, R. M.
    Knupp, D. C.
    Lisboa, K. M.
    Naveira-Cotta, C. P.
    Quaresma, J. N. N.
    Sphaier, L. A.
    [J]. ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (01):
  • [4] NON-CLASSICAL SHELL PROBLEMS
    ZIEGLER, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1966, 17 (02): : 368 - &
  • [5] NON-CLASSICAL SHELL PROBLEMS
    REISSNER, E
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1966, 23 (04) : 336 - &
  • [6] UPPER AND LOWER BOUNDS IN LINEAR EIGENVALUE PROBLEMS
    MASUR, EF
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A682 - A682
  • [7] Non-classical problems of composite failure
    Guz, AN
    [J]. ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 1911 - 1921
  • [8] Optimal bounds of classical and non-classical means in terms of Q means
    Monika Nowicka
    Alfred Witkowski
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [9] Optimal bounds of classical and non-classical means in terms of Q means
    Nowicka, Monika
    Witkowski, Alfred
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [10] FINDING LOWER BOUNDS FOR EIGENVALUES OF NONLINEAR EIGENVALUE PROBLEMS
    JONES, LH
    [J]. SIAM REVIEW, 1972, 14 (03) : 531 - +