GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks

被引:0
|
作者
Zinati, Yazdan [1 ]
Takiddeen, Abdulrahman [1 ]
Emad, Amin [1 ,2 ,3 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
[2] Mila, Quebec AI Inst, Montreal, PQ, Canada
[3] Rosalind & Morris Goodman Canc Inst, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
GENE REGULATORY NETWORKS; INFERENCE;
D O I
10.1038/s41467-024-48516-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce GRouNdGAN, a gene regulatory network (GRN)-guided reference-based causal implicit generative model for simulating single-cell RNA-seq data, in silico perturbation experiments, and benchmarking GRN inference methods. Through the imposition of a user-defined GRN in its architecture, GRouNdGAN simulates steady-state and transient-state single-cell datasets where genes are causally expressed under the control of their regulating transcription factors (TFs). Training on six experimental reference datasets, we show that our model captures non-linear TF-gene dependencies and preserves gene identities, cell trajectories, pseudo-time ordering, and technical and biological noise, with no user manipulation and only implicit parameterization. GRouNdGAN can synthesize cells under new conditions to perform in silico TF knockout experiments. Benchmarking various GRN inference algorithms reveals that GRouNdGAN effectively bridges the existing gap between simulated and biological data benchmarks of GRN inference algorithms, providing gold standard ground truth GRNs and realistic cells corresponding to the biological system of interest. Benchmarking GRN inference methods remains a challenge. Here, authors present GRouNdGAN, a causal generative model that imposes a user-defined GRN in its architecture to simulate realistic single-cell data, bridging the gap between synthetic and biological data benchmarks of GRN inference methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Gaoyang Li
    Shaliu Fu
    Shuguang Wang
    Chenyu Zhu
    Bin Duan
    Chen Tang
    Xiaohan Chen
    Guohui Chuai
    Ping Wang
    Qi Liu
    [J]. Genome Biology, 23
  • [32] Scalable integration of multiomic single-cell data using generative adversarial networks
    Giansanti, Valentina
    Giannese, Francesca
    Botrugno, Oronza A.
    Gandolfi, Giorgia
    Balestrieri, Chiara
    Antoniotti, Marco
    Tonon, Giovanni
    Cittaro, Davide
    [J]. BIOINFORMATICS, 2024, 40 (05)
  • [33] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    [J]. BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [34] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    [J]. CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [36] PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes
    Papadopoulos, Nikolaos
    Gonzalo, Parra R.
    Soeding, Johannes
    [J]. BIOINFORMATICS, 2019, 35 (18) : 3517 - 3519
  • [37] Scalable integration of multiomic single-cell data using generative adversarial networks
    Giansanti, Valentina
    Antoniotti, Marco
    Cittaro, Davide
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 598 - 598
  • [38] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    [J]. Nature Methods, 2017, 14 : 584 - 586
  • [39] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    [J]. BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [40] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Li, Gaoyang
    Fu, Shaliu
    Wang, Shuguang
    Zhu, Chenyu
    Duan, Bin
    Tang, Chen
    Chen, Xiaohan
    Chuai, Guohui
    Wang, Ping
    Liu, Qi
    [J]. GENOME BIOLOGY, 2022, 23 (01)