A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data

被引:0
|
作者
Gaoyang Li
Shaliu Fu
Shuguang Wang
Chenyu Zhu
Bin Duan
Chen Tang
Xiaohan Chen
Guohui Chuai
Ping Wang
Qi Liu
机构
[1] Tongji University,Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University
[2] Tongji University,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology
[3] Shanghai Research Institute for Intelligent Autonomous Systems,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Here, we present a multi-modal deep generative model, the single-cell Multi-View Profiler (scMVP), which is designed for handling sequencing data that simultaneously measure gene expression and chromatin accessibility in the same cell, including SNARE-seq, sci-CAR, Paired-seq, SHARE-seq, and Multiome from 10X Genomics. scMVP generates common latent representations for dimensionality reduction, cell clustering, and developmental trajectory inference and generates separate imputations for differential analysis and cis-regulatory element identification. scMVP can help mitigate data sparsity issues with imputation and accurately identify cell groups for different joint profiling techniques with common latent embedding, and we demonstrate its advantages on several realistic datasets.
引用
收藏
相关论文
共 50 条
  • [1] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Li, Gaoyang
    Fu, Shaliu
    Wang, Shuguang
    Zhu, Chenyu
    Duan, Bin
    Tang, Chen
    Chen, Xiaohan
    Chuai, Guohui
    Wang, Ping
    Liu, Qi
    [J]. GENOME BIOLOGY, 2022, 23 (01)
  • [2] scReadSim: a single-cell RNA-seq and ATAC-seq read simulator
    Guanao Yan
    Dongyuan Song
    Jingyi Jessica Li
    [J]. Nature Communications, 14
  • [3] scReadSim: a single-cell RNA-seq and ATAC-seq read simulator
    Yan, Guanao
    Song, Dongyuan
    Li, Jingyi Jessica
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    [J]. Nature Communications, 14
  • [6] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    [J]. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [7] Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig
    Cai, Shufang
    Hu, Bin
    Wang, Xiaoyu
    Liu, Tongni
    Lin, Zhuhu
    Tong, Xian
    Xu, Rong
    Chen, Meilin
    Duo, Tianqi
    Zhu, Qi
    Liang, Ziyun
    Li, Enru
    Chen, Yaosheng
    Li, Jianhao
    Liu, Xiaohong
    Mo, Delin
    [J]. BMC BIOLOGY, 2023, 21 (01)
  • [8] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    [J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [9] Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
    Lee M.Y.Y.
    Kaestner K.H.
    Li M.
    [J]. Genome Biology, 24 (1):
  • [10] Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig
    Shufang Cai
    Bin Hu
    Xiaoyu Wang
    Tongni Liu
    Zhuhu Lin
    Xian Tong
    Rong Xu
    Meilin Chen
    Tianqi Duo
    Qi Zhu
    Ziyun Liang
    Enru Li
    Yaosheng Chen
    Jianhao Li
    Xiaohong Liu
    Delin Mo
    [J]. BMC Biology, 21