Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [41] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [42] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [43] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [44] ASSESSING SPATIO-TEMPORAL DYNAMICS OF PRINCIPAL LAND COVER PROCESSES IN TURKEY
    Dikmen, Ali Cagatay
    Kusek, Gursel
    Gul, Ali
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (05): : 1332 - 1342
  • [45] Understanding Spatio-Temporal Urban Processes
    Rocha, Lais M. A.
    Bessa, Aline
    Chirigati, Fernando
    OFriel, Eugene
    Moro, Mirella M.
    Freire, Juliana
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 563 - 572
  • [46] Locally stationary spatio-temporal processes
    Matsuda, Yasumasa
    Yajima, Yoshihiro
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (01) : 41 - 57
  • [47] Locally stationary spatio-temporal processes
    Yasumasa Matsuda
    Yoshihiro Yajima
    Japanese Journal of Statistics and Data Science, 2018, 1 (1) : 41 - 57
  • [48] Spatio-temporal Diffusion Point Processes
    Yuan, Yuan
    Ding, Jingtao
    Shao, Chenyang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3173 - 3184
  • [49] Spatio-temporal processes of knowledge creation
    Hautala, Johanna
    Jauhiainen, Jussi S.
    RESEARCH POLICY, 2014, 43 (04) : 655 - 668
  • [50] Spatio-Temporal Dynamics of Rangeland Transformation using machine learning algorithms and Remote Sensing data
    Wang, Ningde
    Naz, Iram
    Aslam, Rana Waqar
    Quddoos, Abdul
    Soufan, Walid
    Raza, Danish
    Ishaq, Tibra
    Ahmed, Bilal
    RANGELAND ECOLOGY & MANAGEMENT, 2024, 94 : 106 - 118