Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [31] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12
  • [32] Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation
    Denner, Stefan
    Khakzar, Ashkan
    Sajid, Moiz
    Saleh, Mahdi
    Spiclin, Ziga
    Kim, Seong Tae
    Navab, Nassir
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 111 - 121
  • [33] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [34] Universal dynamics of biological pattern formation in spatio-temporal morphogen variations
    Dalwadi, Mohit P.
    Pearce, Philip
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2271):
  • [35] Analysis of Spatio-Temporal Dynamics by Artificial and Real FRAP Data
    Mai, Juliane
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 571A - 571A
  • [36] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [37] Spatio-Temporal Dynamics of Carrier Capture Processes: Simulation of Optical Signals
    Lengers, F.
    Rosati, R.
    Kuhn, T.
    Reiter, D. E.
    ACTA PHYSICA POLONICA A, 2017, 132 (02) : 372 - 375
  • [38] ASSESSING SPATIO-TEMPORAL DYNAMICS OF PRINCIPAL LAND COVER PROCESSES IN TURKEY
    Dikmen, Ali Cagatay
    Kusek, Gursel
    Gul, Ali
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (06): : 1799 - 1810
  • [39] Statistical Modeling for Spatio-Temporal Data From Stochastic Convection-Diffusion Processes
    Liu, Xiao
    Yeo, Kyongmin
    Lu, Siyuan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1482 - 1499
  • [40] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412