Density and location of resonances for convex co-compact hyperbolic surfaces

被引:0
|
作者
Frédéric Naud
机构
[1] Université d’Avignon et des pays de Vaucluse,Laboratoire d’Analyse non
来源
Inventiones mathematicae | 2014年 / 195卷
关键词
Zeta Function; Hausdorff Dimension; Closed Geodesic; Hyperbolic Surface; Fredholm Determinant;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=\varGamma\backslash \mathbb {H}^{2}$\end{document} be a convex co-compact hyperbolic surface and let δ be the Hausdorff dimension of the limit set. Let ΔX be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian ΔX in rectangles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl\{ \sigma\leq \mathrm {Re}(s)\leq\delta,\ \big\vert \mathrm {Im}(s)\big\vert\leq T \bigr\} $$\end{document} is less than O(T1+τ(σ)) in the limit T→∞, where τ(σ)<δ as long as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma>{\frac {\delta }{2}}$\end{document}. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353–409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352–368, 2012).
引用
收藏
页码:723 / 750
页数:27
相关论文
共 50 条
  • [41] Transition operators on co-compact G-spaces
    Saloff-Coste, Laurent
    Woess, Wolfgang
    REVISTA MATEMATICA IBEROAMERICANA, 2006, 22 (03) : 747 - 799
  • [42] ESTIMATES OF CUSP FORMS FOR CERTAIN CO-COMPACT ARITHMETIC SUBGROUPS
    Aryasomayajula, Anilatmaja
    Balasubramanyam, Baskar
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4191 - 4201
  • [43] CIRCLE PACKINGS AND CO-COMPACT EXTENSIONS OF KLEINIAN-GROUPS
    BROOKS, R
    INVENTIONES MATHEMATICAE, 1986, 86 (03) : 461 - 469
  • [44] Dynamically defined topological entropy of co-compact open covers
    Gorouhi, Adel
    Ebrahimi, Mohamad
    Mohammadi, Uosef
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 495 - 501
  • [46] Dynamically defined topological entropy of co-compact open covers
    Gorouhi, Adel
    Ebrahimi, Mohammadi
    Mohammadi, Uosef
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 495 - 501
  • [47] Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property
    Bouziad, A
    TOPOLOGY AND ITS APPLICATIONS, 2002, 120 (03) : 283 - 299
  • [48] Counting resonances on hyperbolic surfaces with unitary twists
    Doll, Moritz
    Fedosova, Ksenia
    Pohl, Anke
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (10) : 2805 - 2887
  • [49] The minimally displaced set of an irreducible automorphism of FN is co-compact
    Francaviglia, Stefano
    Martino, Armando
    Syrigos, Dionysios
    ARCHIV DER MATHEMATIK, 2021, 116 (04) : 369 - 383
  • [50] Fuchsian groups and compact hyperbolic surfaces
    Benoist, Yves
    Oh, Hee
    ENSEIGNEMENT MATHEMATIQUE, 2016, 62 (1-2): : 189 - 198