Density and location of resonances for convex co-compact hyperbolic surfaces

被引:0
|
作者
Frédéric Naud
机构
[1] Université d’Avignon et des pays de Vaucluse,Laboratoire d’Analyse non
来源
Inventiones mathematicae | 2014年 / 195卷
关键词
Zeta Function; Hausdorff Dimension; Closed Geodesic; Hyperbolic Surface; Fredholm Determinant;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=\varGamma\backslash \mathbb {H}^{2}$\end{document} be a convex co-compact hyperbolic surface and let δ be the Hausdorff dimension of the limit set. Let ΔX be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian ΔX in rectangles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl\{ \sigma\leq \mathrm {Re}(s)\leq\delta,\ \big\vert \mathrm {Im}(s)\big\vert\leq T \bigr\} $$\end{document} is less than O(T1+τ(σ)) in the limit T→∞, where τ(σ)<δ as long as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma>{\frac {\delta }{2}}$\end{document}. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353–409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352–368, 2012).
引用
收藏
页码:723 / 750
页数:27
相关论文
共 50 条
  • [31] Distribution of Resonances for Hyperbolic Surfaces
    Borthwick, David
    EXPERIMENTAL MATHEMATICS, 2014, 23 (01) : 25 - 45
  • [32] Duality results for co-compact Gabor systems
    Jakobsen, Mads Sielemann
    Lemvig, Jakob
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 144 - 147
  • [33] Co-compact Gabor Systems on Locally Compact Abelian Groups
    Mads Sielemann Jakobsen
    Jakob Lemvig
    Journal of Fourier Analysis and Applications, 2016, 22 : 36 - 70
  • [34] Scales for co-compact embeddings of virtually free groups
    Baumgartner, Udo
    GEOMETRIAE DEDICATA, 2007, 130 (01) : 163 - 175
  • [35] Co-Compact Separation Axioms and Slight Co-Continuity
    Al Ghour, Samer
    Moghrabi, Enas
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 14
  • [36] More examples of discrete co-compact group actions
    Hambleton, Ian
    Pedersen, Erik K.
    ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 133 - 143
  • [37] Scales for co-compact embeddings of virtually free groups
    Udo Baumgartner
    Geometriae Dedicata, 2007, 130 : 163 - 175
  • [38] Classical and quantum resonances for hyperbolic surfaces
    Colin Guillarmou
    Joachim Hilgert
    Tobias Weich
    Mathematische Annalen, 2018, 370 : 1231 - 1275
  • [39] Classical and quantum resonances for hyperbolic surfaces
    Guillarmou, Colin
    Hilgert, Joachim
    Weich, Tobias
    MATHEMATISCHE ANNALEN, 2018, 370 (3-4) : 1231 - 1275
  • [40] THE UNITARY EXTENSION PRINCIPLE FOR LOCALLY COMPACT ABELIAN GROUPS WITH CO-COMPACT SUBGROUPS
    Christensen, Ole
    Goh, Say Song
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (03) : 1189 - 1202