Density and location of resonances for convex co-compact hyperbolic surfaces

被引:0
|
作者
Frédéric Naud
机构
[1] Université d’Avignon et des pays de Vaucluse,Laboratoire d’Analyse non
来源
Inventiones mathematicae | 2014年 / 195卷
关键词
Zeta Function; Hausdorff Dimension; Closed Geodesic; Hyperbolic Surface; Fredholm Determinant;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=\varGamma\backslash \mathbb {H}^{2}$\end{document} be a convex co-compact hyperbolic surface and let δ be the Hausdorff dimension of the limit set. Let ΔX be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian ΔX in rectangles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl\{ \sigma\leq \mathrm {Re}(s)\leq\delta,\ \big\vert \mathrm {Im}(s)\big\vert\leq T \bigr\} $$\end{document} is less than O(T1+τ(σ)) in the limit T→∞, where τ(σ)<δ as long as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma>{\frac {\delta }{2}}$\end{document}. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353–409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352–368, 2012).
引用
收藏
页码:723 / 750
页数:27
相关论文
共 50 条
  • [21] L2-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
    Bridgeman, Martin
    Bromberg, Kenneth
    ADVANCES IN MATHEMATICS, 2024, 451
  • [22] The Selberg zeta function for convex co-compact Schottky groups
    Guillopé, L
    Lin, KK
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) : 149 - 176
  • [23] Expansion of Co-Compact Convex Spacelike Hypersurfaces in Minkowski Space by their Curvature
    Andrews, Ben
    Chen, Xuzhong
    Fang, Hanlong
    McCoy, James
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (02) : 635 - 662
  • [24] A flat torus theorem for convex co-compact actions of projective linear groups
    Islam, Mitul
    Zimmer, Andrew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (02): : 470 - 489
  • [25] Least area planes in Gromov hyperbolic 3-spaces with co-compact metric
    Soma, T
    GEOMETRIAE DEDICATA, 2005, 112 (01) : 123 - 128
  • [26] Least Area Planes in Gromov Hyperbolic 3-Spaces with Co-compact Metric
    Teruhiko Soma
    Geometriae Dedicata, 2005, 112 : 123 - 128
  • [27] Existence of least area planes in hyperbolic 3-space with co-compact metric
    Soma, T
    TOPOLOGY, 2004, 43 (03) : 705 - 716
  • [28] The Entropy of Co-Compact Open Covers
    Wei, Zheng
    Wang, Yangeng
    Wei, Guo
    Wang, Tonghui
    Bourquin, Steven
    ENTROPY, 2013, 15 (07): : 2464 - 2479
  • [29] Co-compact Gabor Systems on Locally Compact Abelian Groups
    Jakobsen, Mads Sielemann
    Lemvig, Jakob
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (01) : 36 - 70
  • [30] RANDOM WALKS ON CO-COMPACT FUCHSIAN GROUPS
    Gouezel, Sebastien
    Lalley, Steven P.
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (01): : 129 - 173