Density and location of resonances for convex co-compact hyperbolic surfaces

被引:0
|
作者
Frédéric Naud
机构
[1] Université d’Avignon et des pays de Vaucluse,Laboratoire d’Analyse non
来源
Inventiones mathematicae | 2014年 / 195卷
关键词
Zeta Function; Hausdorff Dimension; Closed Geodesic; Hyperbolic Surface; Fredholm Determinant;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=\varGamma\backslash \mathbb {H}^{2}$\end{document} be a convex co-compact hyperbolic surface and let δ be the Hausdorff dimension of the limit set. Let ΔX be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian ΔX in rectangles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl\{ \sigma\leq \mathrm {Re}(s)\leq\delta,\ \big\vert \mathrm {Im}(s)\big\vert\leq T \bigr\} $$\end{document} is less than O(T1+τ(σ)) in the limit T→∞, where τ(σ)<δ as long as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma>{\frac {\delta }{2}}$\end{document}. This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353–409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352–368, 2012).
引用
收藏
页码:723 / 750
页数:27
相关论文
共 50 条