Variational p-harmonious functions: existence and convergence to p-harmonic functions

被引:0
|
作者
E. W. Chandra
M. Ishiwata
R. Magnanini
H. Wadade
机构
[1] Osaka University,Department of Systems Innovation Graduate School of Engineering Science
[2] Università di Firenze,Dipartimento di Matematica e Informatica “U. Dini”
[3] Kanazawa University,Faculty of Mechanical Engineering, Institute of Science and Engineering
关键词
Primary: 35J60; 35K55; Secondary: 35J92; 35K92;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper, the last three authors showed that a game-theoretic p-harmonic function v is characterized by an asymptotic mean value property with respect to a kind of mean value νpr[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _p^r[v](x)$$\end{document} defined variationally on balls Br(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_r(x)$$\end{document}. In this paper, in a domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, we consider the operator μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon $$\end{document}, acting on continuous functions on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document}, defined by the formula μpε[v](x)=νprε(x)[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon [v](x)=\nu ^{r_\varepsilon (x)}_p[v](x)$$\end{document}, where rε(x)=min[ε,dist(x,Γ)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\varepsilon (x)=\min [\varepsilon ,\mathop {\mathrm {dist}}(x,\Gamma )]$$\end{document} and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} denotes the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. We first derive various properties of μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\varepsilon _p$$\end{document} such as continuity and monotonicity. Then, we prove the existence and uniqueness of a function uε∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon \in C(\overline{\Omega })$$\end{document} satisfying the Dirichlet-type problem: u(x)=μpε[u](x)foreveryx∈Ω,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(x)=\mu _p^\varepsilon [u](x) \ \text{ for } \text{ every } \ x\in \Omega ,\quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}for any given function g∈C(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in C(\Gamma )$$\end{document}. This result holds, if we assume the existence of a suitable notion of barrier for all points in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. That uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} is what we call the variationalp-harmonious function with Dirichlet boundary data g, and is obtained by means of a Perron-type method based on a comparison principle. We then show that the family {uε}ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u^\varepsilon \}_{\varepsilon >0}$$\end{document} gives an approximation for the viscosity solution u∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in C(\overline{\Omega })$$\end{document} of ΔpGu=0inΩ,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _p^G u=0 \ \text{ in } \Omega , \quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}where ΔpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p^G$$\end{document} is the so-called game-theoretic (or homogeneous) p-Laplace operator. In fact, we prove that uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} converges to u, uniformly on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Variational p-harmonious functions: existence and convergence to p-harmonic functions
    Chandra, E. W.
    Ishiwata, M.
    Magnanini, R.
    Wadade, H.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (05):
  • [2] ON THE EXISTENCE AND UNIQUENESS OF p-HARMONIOUS FUNCTIONS
    Luiro, Hannes
    Parviainen, Mikko
    Saksman, Eero
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (3-4) : 201 - 216
  • [3] On the definition and properties of p-harmonious functions
    Manfredi, Juan J.
    Parviainen, Mikko
    Rossi, Julio D.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (02) : 215 - 241
  • [4] Statistical Functional Equations and p-Harmonious Functions
    Hartenstine, David
    Rudd, Matthew
    ADVANCED NONLINEAR STUDIES, 2013, 13 (01) : 191 - 207
  • [5] PERRON'S METHOD FOR p-HARMONIOUS FUNCTIONS
    Hartenstine, David
    Rudd, Matthew
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [6] The convergence rate of p-harmonic to infinity-harmonic functions
    Bungert, Leon
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (10-12) : 1323 - 1339
  • [7] p-HARMONIOUS FUNCTIONS WITH DRIFT ON GRAPHS VIA GAMES
    Sviridov, Alexander P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [8] P-HARMONIC FUNCTIONS IN THE PLANE
    MANFREDI, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) : 473 - 479
  • [9] Existence and non-existence of minimal graphic and p-harmonic functions
    Casteras, Jean-Baptiste
    Heinonen, Esko
    Holopainen, Ilkka
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 341 - 366
  • [10] ON P-HARMONIC FUNCTIONS IN THE PLANE AND THEIR STREAM FUNCTIONS
    ARONSSON, G
    LINDQVIST, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (01) : 157 - 178