Variational p-harmonious functions: existence and convergence to p-harmonic functions

被引:0
|
作者
E. W. Chandra
M. Ishiwata
R. Magnanini
H. Wadade
机构
[1] Osaka University,Department of Systems Innovation Graduate School of Engineering Science
[2] Università di Firenze,Dipartimento di Matematica e Informatica “U. Dini”
[3] Kanazawa University,Faculty of Mechanical Engineering, Institute of Science and Engineering
关键词
Primary: 35J60; 35K55; Secondary: 35J92; 35K92;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper, the last three authors showed that a game-theoretic p-harmonic function v is characterized by an asymptotic mean value property with respect to a kind of mean value νpr[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _p^r[v](x)$$\end{document} defined variationally on balls Br(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_r(x)$$\end{document}. In this paper, in a domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, we consider the operator μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon $$\end{document}, acting on continuous functions on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document}, defined by the formula μpε[v](x)=νprε(x)[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon [v](x)=\nu ^{r_\varepsilon (x)}_p[v](x)$$\end{document}, where rε(x)=min[ε,dist(x,Γ)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\varepsilon (x)=\min [\varepsilon ,\mathop {\mathrm {dist}}(x,\Gamma )]$$\end{document} and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} denotes the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. We first derive various properties of μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\varepsilon _p$$\end{document} such as continuity and monotonicity. Then, we prove the existence and uniqueness of a function uε∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon \in C(\overline{\Omega })$$\end{document} satisfying the Dirichlet-type problem: u(x)=μpε[u](x)foreveryx∈Ω,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(x)=\mu _p^\varepsilon [u](x) \ \text{ for } \text{ every } \ x\in \Omega ,\quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}for any given function g∈C(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in C(\Gamma )$$\end{document}. This result holds, if we assume the existence of a suitable notion of barrier for all points in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. That uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} is what we call the variationalp-harmonious function with Dirichlet boundary data g, and is obtained by means of a Perron-type method based on a comparison principle. We then show that the family {uε}ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u^\varepsilon \}_{\varepsilon >0}$$\end{document} gives an approximation for the viscosity solution u∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in C(\overline{\Omega })$$\end{document} of ΔpGu=0inΩ,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _p^G u=0 \ \text{ in } \Omega , \quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}where ΔpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p^G$$\end{document} is the so-called game-theoretic (or homogeneous) p-Laplace operator. In fact, we prove that uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} converges to u, uniformly on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Estimates of p-harmonic functions in planar sectors
    Lundstrom, Niklas L. P.
    Singh, Jesper
    ARKIV FOR MATEMATIK, 2023, 61 (01): : 141 - 175
  • [32] Three spheres theorem for p-harmonic functions
    Miklyukov, Vladimir M.
    Rasila, Antti
    Vuorinen, Matti
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1215 - 1230
  • [33] Fatou Theorem of p-harmonic functions on trees
    Kaufman, R
    Wu, JM
    ANNALS OF PROBABILITY, 2000, 28 (03): : 1138 - 1148
  • [34] Monotone quantities of p-harmonic functions and their applications
    Hirsch, Sven
    Miao, Pengzi
    Tam, Luen-fai
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (02) : 599 - 644
  • [35] NEWTON INEQUALITIES FOR p-HARMONIC CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (02): : 239 - 250
  • [36] On the Lipschitz character of orthotropic p-harmonic functions
    Bousquet, P.
    Brasco, L.
    Leone, C.
    Verde, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [37] On the Lipschitz character of orthotropic p-harmonic functions
    P. Bousquet
    L. Brasco
    C. Leone
    A. Verde
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [38] Description of p-harmonic functions on the Cayley tree
    Rozikov, U. A.
    Ishankulov, F. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (02) : 222 - 229
  • [39] MEAN VALUE PROPERTY FOR p-HARMONIC FUNCTIONS
    Giorgi, Tiziana
    Smits, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (07) : 2453 - 2463
  • [40] Explicit p-harmonic functions on the real Grassmannians
    Ghandour, Elsa
    Gudmundsson, Sigmundur
    ADVANCES IN GEOMETRY, 2023, 23 (03) : 315 - 321