Variational p-harmonious functions: existence and convergence to p-harmonic functions

被引:0
|
作者
E. W. Chandra
M. Ishiwata
R. Magnanini
H. Wadade
机构
[1] Osaka University,Department of Systems Innovation Graduate School of Engineering Science
[2] Università di Firenze,Dipartimento di Matematica e Informatica “U. Dini”
[3] Kanazawa University,Faculty of Mechanical Engineering, Institute of Science and Engineering
关键词
Primary: 35J60; 35K55; Secondary: 35J92; 35K92;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper, the last three authors showed that a game-theoretic p-harmonic function v is characterized by an asymptotic mean value property with respect to a kind of mean value νpr[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _p^r[v](x)$$\end{document} defined variationally on balls Br(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_r(x)$$\end{document}. In this paper, in a domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, we consider the operator μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon $$\end{document}, acting on continuous functions on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document}, defined by the formula μpε[v](x)=νprε(x)[v](x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _p^\varepsilon [v](x)=\nu ^{r_\varepsilon (x)}_p[v](x)$$\end{document}, where rε(x)=min[ε,dist(x,Γ)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\varepsilon (x)=\min [\varepsilon ,\mathop {\mathrm {dist}}(x,\Gamma )]$$\end{document} and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} denotes the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. We first derive various properties of μpε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^\varepsilon _p$$\end{document} such as continuity and monotonicity. Then, we prove the existence and uniqueness of a function uε∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon \in C(\overline{\Omega })$$\end{document} satisfying the Dirichlet-type problem: u(x)=μpε[u](x)foreveryx∈Ω,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(x)=\mu _p^\varepsilon [u](x) \ \text{ for } \text{ every } \ x\in \Omega ,\quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}for any given function g∈C(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in C(\Gamma )$$\end{document}. This result holds, if we assume the existence of a suitable notion of barrier for all points in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. That uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} is what we call the variationalp-harmonious function with Dirichlet boundary data g, and is obtained by means of a Perron-type method based on a comparison principle. We then show that the family {uε}ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u^\varepsilon \}_{\varepsilon >0}$$\end{document} gives an approximation for the viscosity solution u∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in C(\overline{\Omega })$$\end{document} of ΔpGu=0inΩ,u=gonΓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _p^G u=0 \ \text{ in } \Omega , \quad u=g \ \hbox { on } \ \Gamma , \end{aligned}$$\end{document}where ΔpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p^G$$\end{document} is the so-called game-theoretic (or homogeneous) p-Laplace operator. In fact, we prove that uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\varepsilon $$\end{document} converges to u, uniformly on Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\Omega }$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Estimates for p-harmonic functions vanishing on a flat
    Lundstrom, Niklas L. P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 6852 - 6860
  • [42] HOLDER CONTINUITY OF DEGENERATE p-HARMONIC FUNCTIONS
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 567 - 577
  • [43] On convexity of level sets of p-harmonic functions
    Zhang, Ting
    Zhang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 2065 - 2081
  • [44] MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY OF GRAPHS
    Lee, Yong Hah
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) : 1241 - 1250
  • [45] p-Harmonic Functions in the Upper Half-space
    Abreu, E.
    Clemente, R.
    do O, J. M.
    Medeiros, E.
    POTENTIAL ANALYSIS, 2024, 60 (04) : 1383 - 1406
  • [46] Description of periodic p-harmonic functions on Cayley tree
    Utkir A. Rozikov
    Farruh T. Ishankulov
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 153 - 160
  • [47] VANISHING p-CAPACITY OF SINGULAR SETS FOR p-HARMONIC FUNCTIONS
    Sato, Tomohiko
    Suzuki, Takashi
    Takahashi, Futoshi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [48] ON P-HARMONIC FUNCTIONS IN THE COMPLEX-PLANE AND CURVATURE
    LINDQVIST, P
    ISRAEL JOURNAL OF MATHEMATICS, 1988, 63 (03) : 257 - 269
  • [49] Wolff potential estimates for Cheeger p-harmonic functions
    Hara, Takanobu
    COLLECTANEA MATHEMATICA, 2018, 69 (03) : 407 - 426
  • [50] Description of periodic p-harmonic functions on Cayley tree
    Rozikov, Utkir A.
    Ishankulov, Farruh T.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (02): : 153 - 160