Statistical Functional Equations and p-Harmonious Functions

被引:0
|
作者
Hartenstine, David [1 ]
Rudd, Matthew [2 ]
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Univ South, Dept Math, Sewanee, TN 37383 USA
关键词
Mean-value property; median; p-harmonic functions; p-harmonious functions; p-Laplacian; BOUNDARY-VALUE-PROBLEMS; POSITIVE RADIAL SOLUTIONS; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; PRINCIPAL EIGENVALUES; ELLIPTIC-EQUATIONS; EXISTENCE; MOTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the mean-value property characterizing harmonic functions and recently established asymptotic statistical formulas characterizing p-harmonic functions, we consider the Dirichlet problem for a functional equation involving a convex combination of the mean and median. We show that this problem has a continuous solution when it has both a sub-solution and a supersolution. We demonstrate that solutions of these problems approximate p-harmonic functions and discuss connections with related results of Manfredi, Parviainen and Rossi.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 50 条
  • [1] ON THE EXISTENCE AND UNIQUENESS OF p-HARMONIOUS FUNCTIONS
    Luiro, Hannes
    Parviainen, Mikko
    Saksman, Eero
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (3-4) : 201 - 216
  • [2] On the definition and properties of p-harmonious functions
    Manfredi, Juan J.
    Parviainen, Mikko
    Rossi, Julio D.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (02) : 215 - 241
  • [3] PERRON'S METHOD FOR p-HARMONIOUS FUNCTIONS
    Hartenstine, David
    Rudd, Matthew
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [4] p-HARMONIOUS FUNCTIONS WITH DRIFT ON GRAPHS VIA GAMES
    Sviridov, Alexander P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [5] Variational p-harmonious functions: existence and convergence to p-harmonic functions
    E. W. Chandra
    M. Ishiwata
    R. Magnanini
    H. Wadade
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [6] Variational p-harmonious functions: existence and convergence to p-harmonic functions
    Chandra, E. W.
    Ishiwata, M.
    Magnanini, R.
    Wadade, H.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (05):
  • [7] A priori Holder and Lipschitz regularity for generalized p-harmonious functions in metric measure spaces
    Arroyo, Angel
    Llorente, Jose G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 168 : 32 - 49
  • [8] Functional equations of spherical functions on p-adic homogeneous spaces
    Y. Hironaka
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2005, 75 : 285 - 311
  • [9] FUNCTIONAL EQUATIONS OF WENG'S ZETA FUNCTIONS FOR (G, P)/Q
    Komori, Yasushi
    AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (04) : 1019 - 1038
  • [10] FUNCTIONAL-EQUATIONS OF WHITTAKER FUNCTIONS ON P-ADIC GROUPS
    KAREL, ML
    AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (06) : 1303 - 1325