Biomimetic cellulose-based superabsorbent hydrogels for treating obesity

被引:0
|
作者
Marta Madaghiele
Christian Demitri
Ivo Surano
Alessandra Silvestri
Milena Vitale
Eliana Panteca
Yishai Zohar
Maria Rescigno
Alessandro Sannino
机构
[1] University of Salento,Department of Engineering for Innovation
[2] IRCCS Humanitas Research Hospital,Department of Biomedical Sciences
[3] Gelesis,undefined
[4] Gelesis,undefined
[5] Humanitas University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the treatment of obesity, nutritional and behavioral modifications are difficult to implement and maintain. Since vegetable consumption is a fundamental part of many dietary interventions and daily nutrient requirements, we developed a novel cellulose-based superabsorbent hydrogel (CB-SAH) platform, inspired by the composition and mechanical properties of raw vegetables, as a mechanobiological therapy. The CB-SAHs properties were studied in a simulated gastrointestinal environment, while their impact on gut tissue was investigated by an ex vivo organ culture (EVOC) model. Functional fibers and raw vegetables were used as reference. CB-SAHs demonstrated orders of magnitude higher elasticity in comparison to the tested functional fibers, however performed similar to the tested raw vegetables. Notably, the biomimetic CB-SAHs with elasticity levels similar to raw vegetables showed benefits in preserving and regulating the gut tissue in the EVOC model. Non-systemic oral mechanotherapeutics based on this technology were advanced through clinical studies, with a first product cleared as an aid for weight management in the US and Europe.
引用
收藏
相关论文
共 50 条
  • [31] Synthesis and Properties of Cellulose-based Superabsorbent Hydrogel by a New Crosslinker
    Heng-Xiang Li
    Xin Tian
    Luming Zhang
    Leili Wang
    Li’e Jin
    Qing Cao
    Fibers and Polymers, 2020, 21 : 1395 - 1402
  • [32] Synthesis and Characterization of Superabsorbent Cellulose-Based Hydrogel for Agriculture Application
    Das, Dipankar
    Prakash, Priyambada
    Rout, Prasanta K.
    Bhaladhare, Sachin
    STARCH-STARKE, 2021, 73 (1-2):
  • [33] Preparation of Biodegradable Cellulose-Based Superabsorbent Polymer Based on Bamboo Shavings
    Ning F.
    Kang M.
    Ma C.
    Zhang J.
    Wang H.
    Qiu Z.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2020, 36 (05): : 26 - 33
  • [34] Bacterial Cellulose-Based Superabsorbent Hydrogel for Wet Wound Dressing
    Mo, Meiqing
    Wu, Chaojun
    Chen, Yehong
    MOLECULES, 2025, 30 (03):
  • [35] Synthesis and Properties of Cellulose-based Superabsorbent Hydrogel by a New Crosslinker
    Li, Heng-Xiang
    Tian, Xin
    Zhang, Luming
    Wang, Leili
    Jin, Li'e
    Cao, Qing
    FIBERS AND POLYMERS, 2020, 21 (07) : 1395 - 1402
  • [36] Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels
    Lionetto, F
    Sannino, A
    Maffezzoli, A
    POLYMER, 2005, 46 (06) : 1796 - 1803
  • [37] Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery
    Chang, Chunyu
    Duan, Bo
    Cai, Jie
    Zhang, Lina
    EUROPEAN POLYMER JOURNAL, 2010, 46 (01) : 92 - 100
  • [38] PREPARATION OF CELLULOSE-BASED HYDROGELS AND THEIR CHARACTERISTICS FOR CELL CULTURE
    Liu, Yuhai
    Li, Lingli
    Dong, Guanxiu
    Yang, Yanling
    Zheng, Chunzhi
    Yang, Runmiao
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2016, 50 (9-10): : 897 - 903
  • [39] Composite hydrogels reinforced by cellulose-based supramolecular filler
    Sugawara, Akihide
    Asoh, Taka-Aki
    Takashima, Yoshinori
    Harada, Akira
    Uyama, Hiroshi
    POLYMER DEGRADATION AND STABILITY, 2020, 177
  • [40] Cellulose-based tissue adhesive hydrogels for hemostatic application
    Jeon, Jihoon
    Choi, Yi Sun
    An, Soohwan
    Lee, Mi Jeong
    Han, Seung Yeop
    Bae, Yunsu
    Cho, Seung-Woo
    TISSUE ENGINEERING PART A, 2022, 28 : 710 - 710