Biomimetic cellulose-based superabsorbent hydrogels for treating obesity

被引:0
|
作者
Marta Madaghiele
Christian Demitri
Ivo Surano
Alessandra Silvestri
Milena Vitale
Eliana Panteca
Yishai Zohar
Maria Rescigno
Alessandro Sannino
机构
[1] University of Salento,Department of Engineering for Innovation
[2] IRCCS Humanitas Research Hospital,Department of Biomedical Sciences
[3] Gelesis,undefined
[4] Gelesis,undefined
[5] Humanitas University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the treatment of obesity, nutritional and behavioral modifications are difficult to implement and maintain. Since vegetable consumption is a fundamental part of many dietary interventions and daily nutrient requirements, we developed a novel cellulose-based superabsorbent hydrogel (CB-SAH) platform, inspired by the composition and mechanical properties of raw vegetables, as a mechanobiological therapy. The CB-SAHs properties were studied in a simulated gastrointestinal environment, while their impact on gut tissue was investigated by an ex vivo organ culture (EVOC) model. Functional fibers and raw vegetables were used as reference. CB-SAHs demonstrated orders of magnitude higher elasticity in comparison to the tested functional fibers, however performed similar to the tested raw vegetables. Notably, the biomimetic CB-SAHs with elasticity levels similar to raw vegetables showed benefits in preserving and regulating the gut tissue in the EVOC model. Non-systemic oral mechanotherapeutics based on this technology were advanced through clinical studies, with a first product cleared as an aid for weight management in the US and Europe.
引用
收藏
相关论文
共 50 条
  • [21] CELLULOSE-BASED HYDROGELS IN TISSUE ENGINEERING APPLICATIONS
    Rusu, Daniela
    Ciolacu, Diana
    Simionescu, Bogdan C.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2019, 53 (9-10): : 907 - 923
  • [22] Utilizing cellulose-based conducting hydrogels in iontronics
    Nyamayaro, Kudzanai
    Hatzikiriakos, Savvas G.
    Mehrkhodavandi, Parisa
    RSC SUSTAINABILITY, 2023, 1 (06): : 1369 - 1385
  • [23] Cellulose-based hydrogels regulated by supramolecular chemistry
    Hu, Danning
    Zeng, Min
    Sun, Yafei
    Yuan, Jinying
    Wei, Yen
    SUSMAT, 2021, 1 (02): : 266 - 284
  • [24] Cellulose-based hydrogels as body water retainers
    Sannino, A
    Esposito, A
    Nicolais, L
    Del Nobile, MA
    Giovane, A
    Balestrieri, C
    Esposito, R
    Agresti, M
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2000, 11 (04) : 247 - 253
  • [25] Cellulose-based hydrogels as body water retainers
    A. Sannino
    A. Esposito
    L. Nicolais
    M. A. Del Nobile
    A. Giovane
    C. Balestrieri
    R. Esposito
    M. Agresti
    Journal of Materials Science: Materials in Medicine, 2000, 11 : 247 - 253
  • [26] Research progress on cellulose-based conductive hydrogels
    Wang, Linlin
    Xiao, Yuanshu
    Meng, Lili
    Li, Shuai
    Jia, Lixia
    Jingxi Huagong/Fine Chemicals, 2023, 40 (11): : 2336 - 2347
  • [27] Chitosan and Cellulose-Based Hydrogels for Wound Management
    Alven, Sibusiso
    Aderibigbe, Blessing Atim
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 30
  • [28] Cellulose-based hydrogels for personal care products
    Bashari, Azadeh
    Shirvan, Anahita Rouhani
    Shakeri, Mina
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2018, 29 (12) : 2853 - 2867
  • [29] Multifunctional cellulose-based hydrogels for biomedical applications
    Fu, Lian-Hua
    Qi, Chao
    Ma, Ming-Guo
    Wan, Pengbo
    JOURNAL OF MATERIALS CHEMISTRY B, 2019, 7 (10) : 1541 - 1562
  • [30] Cellulose-based aerogel from Eichhornia crassipes as an oil superabsorbent
    Yin, Tiantian
    Zhang, Xinying
    Liu, Xiaoyan
    Li, Beibei
    Wang, Chaoqun
    RSC ADVANCES, 2016, 6 (101): : 98563 - 98570