Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels

被引:65
|
作者
Lionetto, F [1 ]
Sannino, A [1 ]
Maffezzoli, A [1 ]
机构
[1] Univ Lecce, Dept Engn Innovat, I-73100 Lecce, Italy
关键词
ultrasound; cross-linking; hydrogel;
D O I
10.1016/j.polymer.2005.01.008
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable hydrogels are finding increasing interest in the academic and industrial field due to their high swelling capacity and the potential for many novel applications enabled by their biodegradability. The monitoring of the hydrogel cross-linking process is a crucial step for predicting hydrogel performances in terms of degree of swelling and viscoelastic properties. In this work, the chemical cross-linking of cellulose based hydrogels has been monitored during synthesis in water by means of ultrasonic wave propagation and low frequency dynamic mechanical analysis (DMA). The effect of the cross-linker concentration on the hydrogel acoustic behaviour has been also analysed and correlated with the different elastic response developed by the macromolecular hydrogel. The results demonstrate the reliability of the ultrasonic wave propagation in the following network formation process of a superabsorbent hydrogel, being capable of following the limited changes in the physical properties of the reacting solution. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1796 / 1803
页数:8
相关论文
共 50 条
  • [1] Advances in cellulose-based superabsorbent hydrogels
    Ma, Jianzhong
    Li, Xiaolu
    Bao, Yan
    RSC ADVANCES, 2015, 5 (73): : 59745 - 59757
  • [2] Environmentally sustainable production of cellulose-based superabsorbent hydrogels
    Marcì, G
    Mele, G
    Palmisano, L
    Pulito, P
    Sannino, A
    GREEN CHEMISTRY, 2006, 8 (05) : 439 - 444
  • [3] Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity
    Peng, Na
    Wang, Yanfeng
    Ye, Qifa
    Liang, Lei
    An, Yuxing
    Li, Qiwei
    Chang, Chunyu
    CARBOHYDRATE POLYMERS, 2016, 137 : 59 - 64
  • [4] Biomimetic cellulose-based superabsorbent hydrogels for treating obesity
    Marta Madaghiele
    Christian Demitri
    Ivo Surano
    Alessandra Silvestri
    Milena Vitale
    Eliana Panteca
    Yishai Zohar
    Maria Rescigno
    Alessandro Sannino
    Scientific Reports, 11
  • [5] Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery
    Chang, Chunyu
    Duan, Bo
    Cai, Jie
    Zhang, Lina
    EUROPEAN POLYMER JOURNAL, 2010, 46 (01) : 92 - 100
  • [6] Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid
    Demitri, Christian
    Del Sole, Roberta
    Scalera, Francesca
    Sannino, Alessandro
    Vasapollo, Giuseppe
    Maffezzoli, Alfonso
    Ambrosio, Luigi
    Nicolais, Luigi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (04) : 2453 - 2460
  • [7] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Supachok Tanpichai
    Farin Phoothong
    Anyaporn Boonmahitthisud
    Scientific Reports, 12
  • [8] Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking
    Tamás Fekete
    Judit Borsa
    Erzsébet Takács
    László Wojnárovits
    Cellulose, 2014, 21 : 4157 - 4165
  • [9] Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture
    Demitri, C.
    Scalera, F.
    Madaghiele, M.
    Sannino, A.
    Maffezzoli, A.
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [10] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Tanpichai, Supachok
    Phoothong, Farin
    Boonmahitthisud, Anyaporn
    SCIENTIFIC REPORTS, 2022, 12 (01)