On skew Laplacian energy of directed graphs

被引:0
|
作者
Bilal A. Chat
机构
[1] Islamic University of Science and Technology,Department of Mathematical Sciences
来源
Afrika Matematika | 2021年 / 32卷
关键词
Digraphs; Skew Laplacian matrix; Skew Laplacian spectrum; Skew Laplacian energy; Primary 05C50; 05C12; Secondary 05C30; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} be a simple digraph with n-vertices, m arcs having skew Laplacian eigenvalues ν1,ν2,⋯,νn-1,νn=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _1, \nu _2, \dots , \nu _{n-1},\nu _n=0$$\end{document}. The skew Laplacian energy SLE(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})$$\end{document} of a digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} is defined as SLE(D)=∑i=1n|νi|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})=\sum _{i=1}^{n}|\nu _i|$$\end{document}. In this paper, we obtain the characteristic polynomial of skew Laplacian matrix of the digraph D1→D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}_{1}\rightarrow \mathscr {D}_{2}$$\end{document} and also obtain the SLE(D1→D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1}\rightarrow \mathscr {D}_{2})$$\end{document} in terms of SLE(D1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1})$$\end{document} and SLE(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{2})$$\end{document} and show the existence of some families of skew Laplacian equienergetic digraphs.
引用
收藏
页码:1269 / 1280
页数:11
相关论文
共 50 条
  • [41] A note on the Laplacian resolvent energy of graphs
    Matejic, M.
    Zogic, E.
    Milovanovic, E.
    Milovanovic, I.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [42] Maximum Laplacian energy of unicyclic graphs
    Das, Kinkar Ch.
    Fritscher, Eliseu
    Pinheiro, Lucelia Kowalski
    Trevisan, Vilmar
    DISCRETE APPLIED MATHEMATICS, 2017, 218 : 71 - 81
  • [43] A note on normalized Laplacian energy of graphs
    M. Hakimi-Nezhaad
    A. R. Ashrafi
    Journal of Contemporary Mathematical Analysis, 2014, 49 : 207 - 211
  • [44] Upper bounds for Laplacian energy of graphs
    Aleksic, Tatjana
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 435 - 439
  • [45] On Seidel Laplacian matrix and energy of graphs
    Yalcin, N. Feyza
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 104 - 118
  • [46] A note on normalized Laplacian energy of graphs
    Hakimi-Nezhaad, M.
    Ashrafi, A. R.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (05): : 207 - 211
  • [47] BOUNDS ON THE DISTANCE LAPLACIAN ENERGY OF GRAPHS
    Yang, Jieshan
    You, Lihua
    Gutman, I.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 245 - 255
  • [48] The Laplacian energy of threshold graphs and majorization
    Dahl, Geir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 518 - 530
  • [49] Seidel Laplacian Energy of Fuzzy graphs
    Sivaranjani K.
    Sundaram O.V.S.
    Akalyadevi K.
    EAI Endorsed Transactions on Energy Web, 2024, 11 : 1 - 6
  • [50] Extremal Laplacian energy of threshold graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 267 - 280