On skew Laplacian energy of directed graphs

被引:0
|
作者
Bilal A. Chat
机构
[1] Islamic University of Science and Technology,Department of Mathematical Sciences
来源
Afrika Matematika | 2021年 / 32卷
关键词
Digraphs; Skew Laplacian matrix; Skew Laplacian spectrum; Skew Laplacian energy; Primary 05C50; 05C12; Secondary 05C30; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} be a simple digraph with n-vertices, m arcs having skew Laplacian eigenvalues ν1,ν2,⋯,νn-1,νn=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _1, \nu _2, \dots , \nu _{n-1},\nu _n=0$$\end{document}. The skew Laplacian energy SLE(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})$$\end{document} of a digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} is defined as SLE(D)=∑i=1n|νi|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})=\sum _{i=1}^{n}|\nu _i|$$\end{document}. In this paper, we obtain the characteristic polynomial of skew Laplacian matrix of the digraph D1→D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}_{1}\rightarrow \mathscr {D}_{2}$$\end{document} and also obtain the SLE(D1→D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1}\rightarrow \mathscr {D}_{2})$$\end{document} in terms of SLE(D1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1})$$\end{document} and SLE(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{2})$$\end{document} and show the existence of some families of skew Laplacian equienergetic digraphs.
引用
收藏
页码:1269 / 1280
页数:11
相关论文
共 50 条
  • [31] ON ORIENTED GRAPHS WITH MINIMAL SKEW ENERGY
    Gong, Shicai
    Li, Xueliang
    Xu, Guanghui
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 692 - 704
  • [32] p-Laplacian Regularization of Signals on Directed Graphs
    Abu Aisheh, Zeina
    Bougleux, Sebastien
    Lezoray, Olivier
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 650 - 661
  • [33] Laplacian matrices of general complex weighted directed graphs
    Dong, Jiu-Gang
    Lin, Lin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 1 - 9
  • [34] SKEW-SPECTRA AND SKEW ENERGY OF VARIOUS PRODUCTS OF GRAPHS
    Li, X.
    Lian, H.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 13 - 21
  • [35] On eigenvalues of Laplacian matrix for a class of directed signed graphs
    Ahmadizadeh, Saeed
    Shames, Iman
    Martin, Samuel
    Nesic, Dragan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 523 : 281 - 306
  • [36] Laplacian matrices of general complex weighted directed graphs
    Dong, Jiu-Gang
    Lin, Lin
    Linear Algebra and Its Applications, 2016, 510 : 1 - 9
  • [37] Energy, Laplacian energy of double graphs and new families of equienergetic graphs
    Ganie, Hilal A.
    Pirzada, Shariefuddin
    Ivanyi, Antal
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2014, 6 (01) : 89 - 116
  • [38] Some properties of Laplacian energy of graphs
    Hong, Hai-Yan
    Fan, Yi-Zheng
    Advances in Matrix Theory and Applications, 2006, : 297 - 299
  • [39] Threshold graphs of maximal Laplacian energy
    Helmberg, Christoph
    Trevisan, Vilmar
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1075 - 1084
  • [40] Unicyclic graphs with equal Laplacian energy
    Fritscher, Eliseu
    Hoppen, Carlos
    Trevisan, Vilmar
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (02): : 180 - 194