On skew Laplacian energy of directed graphs

被引:0
|
作者
Bilal A. Chat
机构
[1] Islamic University of Science and Technology,Department of Mathematical Sciences
来源
Afrika Matematika | 2021年 / 32卷
关键词
Digraphs; Skew Laplacian matrix; Skew Laplacian spectrum; Skew Laplacian energy; Primary 05C50; 05C12; Secondary 05C30; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} be a simple digraph with n-vertices, m arcs having skew Laplacian eigenvalues ν1,ν2,⋯,νn-1,νn=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _1, \nu _2, \dots , \nu _{n-1},\nu _n=0$$\end{document}. The skew Laplacian energy SLE(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})$$\end{document} of a digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} is defined as SLE(D)=∑i=1n|νi|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})=\sum _{i=1}^{n}|\nu _i|$$\end{document}. In this paper, we obtain the characteristic polynomial of skew Laplacian matrix of the digraph D1→D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}_{1}\rightarrow \mathscr {D}_{2}$$\end{document} and also obtain the SLE(D1→D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1}\rightarrow \mathscr {D}_{2})$$\end{document} in terms of SLE(D1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1})$$\end{document} and SLE(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{2})$$\end{document} and show the existence of some families of skew Laplacian equienergetic digraphs.
引用
收藏
页码:1269 / 1280
页数:11
相关论文
共 50 条
  • [21] Note on Laplacian energy of graphs
    Wang, Hongzhuan
    Hua, Hongbo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 59 (02) : 373 - 380
  • [22] A note on Laplacian energy of graphs
    Zhou, Bo
    Gutman, Ivan
    Aleksic, Tatjana
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 441 - 446
  • [23] ON LAPLACIAN RESOLVENT ENERGY OF GRAPHS
    Bhatnagar, Sandeep
    Merajuddin, Siddiqui
    Pirzada, Shariefuddin
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (04) : 217 - 225
  • [24] NEW SKEW LAPLACIAN ENERGY OF SIMPLE DIGRAPHS
    Cai, Q.
    Li, X.
    Song, J.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (01) : 27 - 37
  • [25] Bounds for the skew Laplacian energy of weighted digraphs
    Chat, Bilal A.
    Ganie, Hilal A.
    Pirzada, S.
    AFRIKA MATEMATIKA, 2021, 32 (5-6) : 745 - 756
  • [26] Bounds for the skew Laplacian energy of weighted digraphs
    Bilal A. Chat
    Hilal A. Ganie
    S. Pirzada
    Afrika Matematika, 2021, 32 : 745 - 756
  • [27] Some remarks on Laplacian eigenvalues and Laplacian energy of graphs
    Fath-Tabar, Gholam Hossein
    Ashrafi, Ali Reza
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 443 - 451
  • [28] The bounds of the energy and Laplacian energy of chain graphs
    Mei, Yinzhen
    Guo, Chengxiao
    Liu, Mengtian
    AIMS MATHEMATICS, 2021, 6 (05): : 4847 - 4859
  • [29] The skew energy of random oriented graphs
    Chen, Xiaolin
    Li, Xueliang
    Lian, Huishu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4547 - 4556
  • [30] NOTE ON THE SKEW ENERGY OF ORIENTED GRAPHS
    He, Jun
    Huang, Ting-Zhu
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 57 - 61