On skew Laplacian energy of directed graphs

被引:0
|
作者
Bilal A. Chat
机构
[1] Islamic University of Science and Technology,Department of Mathematical Sciences
来源
Afrika Matematika | 2021年 / 32卷
关键词
Digraphs; Skew Laplacian matrix; Skew Laplacian spectrum; Skew Laplacian energy; Primary 05C50; 05C12; Secondary 05C30; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} be a simple digraph with n-vertices, m arcs having skew Laplacian eigenvalues ν1,ν2,⋯,νn-1,νn=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _1, \nu _2, \dots , \nu _{n-1},\nu _n=0$$\end{document}. The skew Laplacian energy SLE(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})$$\end{document} of a digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}$$\end{document} is defined as SLE(D)=∑i=1n|νi|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D})=\sum _{i=1}^{n}|\nu _i|$$\end{document}. In this paper, we obtain the characteristic polynomial of skew Laplacian matrix of the digraph D1→D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}_{1}\rightarrow \mathscr {D}_{2}$$\end{document} and also obtain the SLE(D1→D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1}\rightarrow \mathscr {D}_{2})$$\end{document} in terms of SLE(D1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{1})$$\end{document} and SLE(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SLE(\mathscr {D}_{2})$$\end{document} and show the existence of some families of skew Laplacian equienergetic digraphs.
引用
收藏
页码:1269 / 1280
页数:11
相关论文
共 50 条
  • [1] On skew Laplacian energy of directed graphs
    Chat, Bilal A.
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1269 - 1280
  • [2] ON SKEW LAPLACIAN SPECTRA AND SKEW LAPLACIAN ENERGY OF DIGRAPHS
    Ganie, Hilal
    Chat, Bilal
    Pirzada, S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 87 - 98
  • [3] Hermitian skew Laplacian matrix of oriented graphs
    Ganie, Hilal A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025, 17 (02)
  • [4] On two Laplacian matrices for skew gain graphs
    Roy, Roshni T.
    Hameed, Shahul K.
    Germina, K. A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 125 - 135
  • [5] Skew Laplacian energy of digraphs
    Ganie H.A.
    Chat B.A.
    Afrika Matematika, 2018, 29 (3-4) : 499 - 507
  • [6] The diameter and Laplacian eigenvalues of directed graphs
    Chung, F
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] A Primer on Laplacian Dynamics in Directed Graphs
    Veerman, J. J. P.
    Lyons, R.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (02): : 196 - 206
  • [8] ON ENERGY AND LAPLACIAN ENERGY OF GRAPHS
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 167 - 186
  • [9] On Laplacian energy of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    DISCRETE MATHEMATICS, 2014, 325 : 52 - 64
  • [10] On Laplacian energy of graphs
    Zhou, Bo
    Gutman, Ivan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 57 (01) : 211 - 220