Multiple imputation in principal component analysis

被引:0
|
作者
Julie Josse
Jérôme Pagès
François Husson
机构
[1] Agrocampus Ouest,
关键词
Principal component analysis; Missing values; EM algorithm; Multiple imputation; Bootstrap; Procrustes rotation; 62H25; 62G09;
D O I
暂无
中图分类号
学科分类号
摘要
The available methods to handle missing values in principal component analysis only provide point estimates of the parameters (axes and components) and estimates of the missing values. To take into account the variability due to missing values a multiple imputation method is proposed. First a method to generate multiple imputed data sets from a principal component analysis model is defined. Then, two ways to visualize the uncertainty due to missing values onto the principal component analysis results are described. The first one consists in projecting the imputed data sets onto a reference configuration as supplementary elements to assess the stability of the individuals (respectively of the variables). The second one consists in performing a principal component analysis on each imputed data set and fitting each obtained configuration onto the reference one with Procrustes rotation. The latter strategy allows to assess the variability of the principal component analysis parameters induced by the missing values. The methodology is then evaluated from a real data set.
引用
收藏
页码:231 / 246
页数:15
相关论文
共 50 条
  • [21] IMPUTATION OF MISSING DATA USING BAYESIAN PRINCIPAL COMPONENT ANALYSIS ON TEC IONOSPHERIC SATELLITE DATASET
    Subashini, P.
    Krishnaveni, M.
    [J]. 2011 24TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2011, : 1540 - 1543
  • [22] Missing Traffic Data Imputation with a Linear Generative Model Based on Probabilistic Principal Component Analysis
    Huang, Liping
    Li, Zhenghuan
    Luo, Ruikang
    Su, Rong
    [J]. SENSORS, 2023, 23 (01)
  • [23] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Sun Hee KIM
    Hyung Jeong YANG
    Kam Swee NG
    [J]. Journal of Zhejiang University-Science C(Computers & Electronics), 2011, 12 (08) : 687 - 697
  • [24] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Sun Hee Kim
    Hyung Jeong Yang
    Kam Swee Ng
    [J]. Journal of Zhejiang University SCIENCE C, 2011, 12 : 687 - 697
  • [25] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Kim, Sun Hee
    Yang, Hyung Jeong
    Ng, Kam Swee
    [J]. Journal of Zhejiang University: Science C, 2011, 12 (08): : 687 - 697
  • [26] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Sun Hee KIM
    Hyung Jeong YANG
    Kam Swee NG
    [J]. Frontiers of Information Technology & Electronic Engineering, 2011, 12 (08) : 687 - 697
  • [27] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Department of Computer Science, Chonnam National University, Gwangju
    500-757, Korea, Republic of
    [J]. J. Zhejiang Univ. Sci. C, 8 (687-697):
  • [28] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Kim, Sun Hee
    Yang, Hyung Jeong
    Ng, Kam Swee
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (08): : 687 - 697
  • [29] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [30] Integrative and regularized principal component analysis of multiple sources of data
    Liu, Binghui
    Shen, Xiaotong
    Pan, Wei
    [J]. STATISTICS IN MEDICINE, 2016, 35 (13) : 2235 - 2250