Multiple imputation in principal component analysis

被引:0
|
作者
Julie Josse
Jérôme Pagès
François Husson
机构
[1] Agrocampus Ouest,
关键词
Principal component analysis; Missing values; EM algorithm; Multiple imputation; Bootstrap; Procrustes rotation; 62H25; 62G09;
D O I
暂无
中图分类号
学科分类号
摘要
The available methods to handle missing values in principal component analysis only provide point estimates of the parameters (axes and components) and estimates of the missing values. To take into account the variability due to missing values a multiple imputation method is proposed. First a method to generate multiple imputed data sets from a principal component analysis model is defined. Then, two ways to visualize the uncertainty due to missing values onto the principal component analysis results are described. The first one consists in projecting the imputed data sets onto a reference configuration as supplementary elements to assess the stability of the individuals (respectively of the variables). The second one consists in performing a principal component analysis on each imputed data set and fitting each obtained configuration onto the reference one with Procrustes rotation. The latter strategy allows to assess the variability of the principal component analysis parameters induced by the missing values. The methodology is then evaluated from a real data set.
引用
收藏
页码:231 / 246
页数:15
相关论文
共 50 条
  • [31] Multiple Chemical Sensitivity Syndrome: A Principal Component Analysis of Symptoms
    Del Casale, Antonio
    Ferracuti, Stefano
    Mosca, Alessio
    Pomes, Leda Marina
    Fiasche, Federica
    Bonanni, Luca
    Borro, Marina
    Gentile, Giovanna
    Martelletti, Paolo
    Simmaco, Maurizio
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (18) : 1 - 12
  • [32] Constructing bootstrap confidence intervals for principal component loadings in the presence of missing data: A multiple-imputation approach
    van Ginkel, Joost R.
    Kiers, Henk A. L.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2011, 64 (03): : 498 - 515
  • [33] On the performance of principal component analysis in multiple gross error identification
    Jiang, QY
    Sánchez, M
    Bagajewicz, M
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (05) : 2005 - 2012
  • [34] Principal component analysis
    Michael Greenacre
    Patrick J. F. Groenen
    Trevor Hastie
    Alfonso Iodice D’Enza
    Angelos Markos
    Elena Tuzhilina
    [J]. Nature Reviews Methods Primers, 2
  • [35] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    [J]. ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [36] Principal component analysis
    Wallen, Hayley
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [37] Principal component analysis
    Jake Lever
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2017, 14 : 641 - 642
  • [38] PRINCIPAL COMPONENT ANALYSIS
    WOLD, S
    ESBENSEN, K
    GELADI, P
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1987, 2 (1-3) : 37 - 52
  • [39] Principal component analysis
    School of Behavioral and Brain Sciences, University of Texas at Dallas, MS: GR4.1, Richardson, TX 75080-3021, United States
    不详
    [J]. Wiley Interdiscip. Rev. Comput. Stat., 4 (433-459):
  • [40] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459