Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data

被引:0
|
作者
Sun Hee KIM [1 ]
Hyung Jeong YANG [1 ]
Kam Swee NG [1 ]
机构
[1] Department of Computer Science,Chonnam National University
关键词
Electroencephalography (EEG); Missing value imputation; Hidden pattern discovery; Expectation maximization; Principal component analysis;
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
Missing values occur in bio-signal processing for various reasons,including technical problems or biological char-acteristics.These missing values are then either simply excluded or substituted with estimated values for further processing.When the missing signal values are estimated for electroencephalography (EEG) signals,an example where electrical signals arrive quickly and successively,rapid processing of high-speed data is required for immediate decision making.In this study,we propose an incremental expectation maximization principal component analysis (iEMPCA) method that automatically estimates missing values from multivariable EEG time series data without requiring a whole and complete data set.The proposed method solves the problem of a biased model,which inevitably results from simply removing incomplete data rather than estimating them,and thus reduces the loss of information by incorporating missing values in real time.By using an incremental approach,the proposed method alsominimizes memory usage and processing time of continuously arriving data.Experimental results show that the proposed method assigns more accurate missing values than previous methods.
引用
收藏
页码:687 / 697
页数:11
相关论文
共 50 条
  • [1] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Sun Hee Kim
    Hyung Jeong Yang
    Kam Swee Ng
    [J]. Journal of Zhejiang University SCIENCE C, 2011, 12 : 687 - 697
  • [2] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Sun Hee KIM
    Hyung Jeong YANG
    Kam Swee NG
    [J]. Journal of Zhejiang University-Science C(Computers & Electronics)., 2011, 12 (08) - 697
  • [3] Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
    Kim, Sun Hee
    Yang, Hyung Jeong
    Ng, Kam Swee
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (08): : 687 - 697
  • [4] Symbolic Missing Data Imputation in Principal Component Analysis
    Zuccolotto, Paola
    [J]. Statistical Analysis and Data Mining, 2011, 4 (02): : 171 - 183
  • [5] Missing data imputation via the expectation-maximization algorithm can improve principal component analysis aimed at deriving biomarker profiles and dietary patterns
    Malan, Linda
    Smuts, Cornelius M.
    Baumgartner, Jeannine
    Ricci, Cristian
    [J]. NUTRITION RESEARCH, 2020, 75 : 67 - 76
  • [6] Probabilistic principal component analysis with expectation maximization (PPCA-EM) facilitates volume classification and estimates the missing data
    Yu, Lingbo
    Snapp, Robert R.
    Ruiz, Teresa
    Radermacher, Michael
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2010, 171 (01) : 18 - 30
  • [7] Missing Data Imputation Algorithm for Transmission Systems Based on Multivariate Imputation With Principal Component Analysis
    Sim, Yeon-Sub
    Hwang, Jae-Sang
    Mun, Sung-Duk
    Kim, Tae-Joon
    Chang, Seung Jin
    [J]. IEEE ACCESS, 2022, 10 : 83195 - 83203
  • [8] Evaluation of the principal-component and expectation-maximization methods for estimating missing data in morphometric studies
    Strauss, RE
    Atanassov, MN
    De Oliveira, JA
    [J]. JOURNAL OF VERTEBRATE PALEONTOLOGY, 2003, 23 (02) : 284 - 296
  • [9] Microarray missing value imputation by bayesian principal component analysis and local least squares
    [J]. Cai, C. (cheney.chengcai@gmail.com), 2013, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (04):
  • [10] A Combination of Multiple Imputation and Principal Component Analysis to Handle Missing Value with Arbitrary Pattern
    Anindita, Novita
    Nugroho, Hanung Adi
    Adji, Teguh Bharata
    [J]. 2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 1 - 5