Multiple imputation in principal component analysis

被引:0
|
作者
Julie Josse
Jérôme Pagès
François Husson
机构
[1] Agrocampus Ouest,
关键词
Principal component analysis; Missing values; EM algorithm; Multiple imputation; Bootstrap; Procrustes rotation; 62H25; 62G09;
D O I
暂无
中图分类号
学科分类号
摘要
The available methods to handle missing values in principal component analysis only provide point estimates of the parameters (axes and components) and estimates of the missing values. To take into account the variability due to missing values a multiple imputation method is proposed. First a method to generate multiple imputed data sets from a principal component analysis model is defined. Then, two ways to visualize the uncertainty due to missing values onto the principal component analysis results are described. The first one consists in projecting the imputed data sets onto a reference configuration as supplementary elements to assess the stability of the individuals (respectively of the variables). The second one consists in performing a principal component analysis on each imputed data set and fitting each obtained configuration onto the reference one with Procrustes rotation. The latter strategy allows to assess the variability of the principal component analysis parameters induced by the missing values. The methodology is then evaluated from a real data set.
引用
收藏
页码:231 / 246
页数:15
相关论文
共 50 条
  • [1] Multiple imputation in principal component analysis
    Josse, Julie
    Pages, Jerome
    Husson, Francois
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (03) : 231 - 246
  • [2] Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis
    Joost R. van Ginkel
    Pieter M. Kroonenberg
    [J]. Journal of Classification, 2014, 31 : 242 - 269
  • [3] Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis
    van Ginkel, Joost R.
    Kroonenberg, Pieter M.
    [J]. JOURNAL OF CLASSIFICATION, 2014, 31 (02) : 242 - 269
  • [4] Multiple imputation for continuous variables using a Bayesian principal component analysis
    Audigier, Vincent
    Husson, Francois
    Josse, Julie
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (11) : 2140 - 2156
  • [5] A Combination of Multiple Imputation and Principal Component Analysis to Handle Missing Value with Arbitrary Pattern
    Anindita, Novita
    Nugroho, Hanung Adi
    Adji, Teguh Bharata
    [J]. 2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 1 - 5
  • [6] Symbolic Missing Data Imputation in Principal Component Analysis
    Zuccolotto P.
    [J]. Statistical Analysis and Data Mining, 2011, 4 (02): : 171 - 183
  • [7] Missing Data Imputation Algorithm for Transmission Systems Based on Multivariate Imputation With Principal Component Analysis
    Sim, Yeon-Sub
    Hwang, Jae-Sang
    Mun, Sung-Duk
    Kim, Tae-Joon
    Chang, Seung Jin
    [J]. IEEE ACCESS, 2022, 10 : 83195 - 83203
  • [8] Multiple group principal component analysis
    Richard A. Reyment
    [J]. Mathematical Geology, 1997, 29 : 1 - 16
  • [9] Multiple group principal component analysis
    Reyment, RA
    [J]. MATHEMATICAL GEOLOGY, 1997, 29 (01): : 1 - 16
  • [10] An imputation method for categorical variables with application to nonlinear principal component analysis
    Ferrari, Pier Alda
    Annoni, Paola
    Barbiero, Alessandro
    Manzi, Giancarlo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (07) : 2410 - 2420