Multiple group principal component analysis

被引:5
|
作者
Reyment, RA
机构
[1] Institute of Earth Sciences, Uppsala University
来源
MATHEMATICAL GEOLOGY | 1997年 / 29卷 / 01期
关键词
common principal components; multiple groups; compositions;
D O I
10.1007/BF02769617
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Common Principal Component Analysis is a generalization of standard principal components to several groups under the rigid mathematical assumption of equality of all latent vectors across groups (i.e., principal component directions), whereas the latent roots are allowed to vary between groups (differing inflations of dispersion ellipsoids). In practice, data that fulfill these strict requirements are relatively rare. Examples from palaeontology are used to illustrate the principles. Compositional data can be made to fit the Common Principal component (CPC) model by the appropriate logratio covariance matrix.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Multiple group principal component analysis
    Richard A. Reyment
    [J]. Mathematical Geology, 1997, 29 : 1 - 16
  • [2] MULTIPLE GROUP PRINCIPAL COMPONENT ANALYSIS AND POPULATION DIFFERENTIATION
    THORPE, RS
    [J]. JOURNAL OF ZOOLOGY, 1988, 216 : 37 - 40
  • [3] Multiple imputation in principal component analysis
    Julie Josse
    Jérôme Pagès
    François Husson
    [J]. Advances in Data Analysis and Classification, 2011, 5 : 231 - 246
  • [4] Multiple imputation in principal component analysis
    Josse, Julie
    Pages, Jerome
    Husson, Francois
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (03) : 231 - 246
  • [6] Analyzing Multiple Phenotypes Based on Principal Component Analysis
    De-liang Bu
    San-guo Zhang
    Na Li
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 843 - 860
  • [7] Secure principal component analysis in multiple distributed nodes
    Won, Hee-Sun
    Kim, Sang-Pil
    Lee, Sanghun
    Choi, Mi-Jung
    Moon, Yang-Sae
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (14) : 2348 - 2358
  • [8] Analyzing Multiple Phenotypes Based on Principal Component Analysis
    Bu, De-liang
    Zhang, San-guo
    Li, Na
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 843 - 860
  • [9] Neural Principal Component Analysis for Learning Multiple Datasets
    Chartier, Sylvain
    Ross, Matt
    [J]. CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 2015, 69 (04): : 353 - 354
  • [10] Analyzing Multiple Phenotypes Based on Principal Component Analysis
    De-liang BU
    San-guo ZHANG
    Na LI
    [J]. Acta Mathematicae Applicatae Sinica, 2022, 38 (04) : 843 - 860