On the Parameterized Complexity of Reconfiguration Problems

被引:0
|
作者
Amer E. Mouawad
Naomi Nishimura
Venkatesh Raman
Narges Simjour
Akira Suzuki
机构
[1] University of Bergen,Department of Informatics
[2] University of Waterloo,David R. Cheriton School of Computer Science
[3] The Institute of Mathematical Sciences,Graduate School of Information Sciences
[4] Google Waterloo,undefined
[5] Tohoku University,undefined
[6] CREST,undefined
[7] JST,undefined
来源
Algorithmica | 2017年 / 78卷
关键词
Reconfiguration; Parameterized complexity; Solution space; Vertex cover; Hitting set;
D O I
暂无
中图分类号
学科分类号
摘要
We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration variant of an optimization problem Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps, i.e. a reconfiguration sequence, that can be applied to transform S into T such that each step results in a feasible solution to Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. For most of the results in this paper, S and T are sets of vertices of a given graph and a reconfiguration step adds or removes a vertex. Our study is motivated by results establishing that for many NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete. We address the question for several important graph properties under two natural parameterizations: k, a bound on the size of solutions, and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, a bound on the length of reconfiguration sequences. Our first general result is an algorithmic paradigm, the reconfiguration kernel, used to obtain fixed-parameter tractable algorithms for reconfiguration variants of Vertex Cover and, more generally, Bounded Hitting Set and Feedback Vertex Set, all parameterized by k. In contrast, we show that reconfiguring Unbounded Hitting Set is W[2]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}. We also demonstrate the W[1]-hardness of reconfiguration variants of a large class of maximization problems parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}, and of their corresponding deletion problems parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}; in doing so, we show that there exist problems in FPT when parameterized by k, but whose reconfiguration variants are W[1]-hard when parameterized by k+ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+\ell $$\end{document}.
引用
收藏
页码:274 / 297
页数:23
相关论文
共 50 条
  • [1] On the Parameterized Complexity of Reconfiguration Problems
    Mouawad, Amer E.
    Nishimura, Naomi
    Raman, Venkatesh
    Simjour, Narges
    Suzuki, Akira
    ALGORITHMICA, 2017, 78 (01) : 274 - 297
  • [2] A survey on the parameterized complexity of reconfiguration problems
    Bousquet, Nicolas
    Mouawad, Amer E.
    Nishimura, Naomi
    Siebertz, Sebastian
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [3] Parameterized complexity of independent set reconfiguration problems
    Ito, Takehiro
    Kaminski, Marcin
    Ono, Hirotaka
    Suzuki, Akira
    Uehara, Ryuhei
    Yamanaka, Katsuhisa
    DISCRETE APPLIED MATHEMATICS, 2020, 283 (283) : 336 - 345
  • [4] Parameterized Complexity of Reconfiguration of Atoms
    Cooper, Alexandre
    Maaz, Stephanie
    Mouawad, Amer E.
    Nishimura, Naomi
    ALGORITHMICA, 2024, 86 (10) : 3284 - 3308
  • [5] On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets
    Daniel Lokshtanov
    Amer E. Mouawad
    Fahad Panolan
    Sebastian Siebertz
    Algorithmica, 2022, 84 : 482 - 509
  • [6] On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Panolan, Fahad
    Siebertz, Sebastian
    ALGORITHMICA, 2022, 84 (02) : 482 - 509
  • [7] On the complexity of reconfiguration problems
    Ito, Takehiro
    Demaine, Erik D.
    Harvey, Nicholas J. A.
    Papadimitriou, Christos H.
    Sideri, Martha
    Uehara, Ryuhei
    Uno, Yushi
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (12-14) : 1054 - 1065
  • [8] On the Complexity of Reconfiguration Problems
    Ito, Takehiro
    Demaine, Erik D.
    Harvey, Nicholas J. A.
    Papadimitriou, Christos H.
    Sideri, Martha
    Uehara, Ryuhei
    Uno, Yushi
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 28 - +
  • [9] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 538 - 547
  • [10] Counting Problems in Parameterized Complexity
    Zhang, Chihao
    Chen, Yijia
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 410 - 420