Diffraction-limited hyperspectral mid-infrared single-pixel microscopy

被引:0
|
作者
Alexander Ebner
Paul Gattinger
Ivan Zorin
Lukas Krainer
Christian Rankl
Markus Brandstetter
机构
[1] RECENDT — Research Center for Non-Destructive Testing GmbH,
[2] Prospective Instruments LK OG,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we demonstrate a wide-field hyperspectral mid-infrared (MIR) microscope based on multidimensional single-pixel imaging (SPI). The microscope employs a high brightness MIR supercontinuum source for broadband (1.55 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}–4.5 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) sample illumination. Hyperspectral imaging capability is achieved by a single micro-opto-electro-mechanical digital micromirror device (DMD), which provides both spatial and spectral differentiation. For that purpose the operational spectral bandwidth of the DMD was significantly extended into the MIR spectral region. In the presented design, the DMD fulfills two essential tasks. On the one hand, as standard for the SPI approach, the DMD sequentially masks captured scenes enabling diffraction-limited imaging in the tens of millisecond time-regime. On the other hand, the diffraction at the micromirrors leads to dispersion of the projected field and thus allows for wavelength selection without the application of additional dispersive optical elements, such as gratings or prisms. In the experimental part, first of all, the imaging and spectral capabilities of the hyperspectral microscope are characterized. The spatial and spectral resolution is assessed by means of test targets and linear variable filters, respectively. At a wavelength of 4.15 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} a spatial resolution of 4.92 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} is achieved with a native spectral resolution better than 118.1 nm. Further, a post-processing method for drastic enhancement of the spectral resolution is proposed and discussed. The performance of the MIR hyperspectral microsopce is demonstrated for label-free chemical imaging and examination of polymer compounds and red blood cells. The acquisition and reconstruction of Hadamard sampled 64 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 64 images is achieved in 450 ms and 162 ms, respectively. Thus, combined with an unprecedented intrinsic flexibiliy gained by a tunable field of view and adjustable spatial resolution, the demonstrated design drastically improves the sample throughput in MIR chemical and biomedical imaging.
引用
收藏
相关论文
共 50 条
  • [41] DIFFRACTION-LIMITED FAR-INFRARED IMAGING OF PROTOSTARS
    HARVEY, PM
    LESTER, DF
    JOY, M
    IAU SYMPOSIA, 1987, (115): : 371 - 371
  • [42] The first spatially resolved mid-infrared spectra of NGC 1068 obtained at diffraction-limited resolution with the Keck I telescope long wavelength spectrometer
    Rhee, JH
    Larkin, JE
    ASTROPHYSICAL JOURNAL, 2006, 640 (02): : 625 - 638
  • [43] Thermal characterization of two opposing carbon nanotube arrays using diffraction-limited infrared microscopy
    Hu, Xuejiao
    Panzer, Matt
    Goodson, Kenneth E.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 2, 2005, 376-2 : 835 - 839
  • [44] Diffraction-limited optics for single-atommanipulation
    Sortais, Y. R. P.
    Marion, H.
    Tuchendler, C.
    Lance, A. M.
    Lamare, M.
    Fournet, P.
    Armellin, C.
    Mercier, R.
    Messin, G.
    Browaeys, A.
    Grangier, P.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [45] Mid-infrared upconversion based hyperspectral imaging
    Junaid, Saher
    Tomko, Jan
    Semtsiv, Mykhaylo P.
    Kischkat, Jan
    Masselink, W. Ted
    Pedersen, Christian
    Tidemand-Lichtenberg, Peter
    OPTICS EXPRESS, 2018, 26 (03): : 2203 - 2211
  • [46] SIBI: A compact hyperspectral camera in the mid-infrared
    Pola Fossi, Armande
    Ferrec, Yann
    Domel, Roland
    Coudrain, Christophe
    Guerineau, Nicolas
    Roux, Nicolas
    D'Almeida, Oscar
    Bousquet, Marc
    Kling, Emmanuel
    Sauer, Herve
    ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS IX, 2015, 9649
  • [47] Design of Hyperspectral mid-infrared imaging system
    Yu, Hui
    Yang, Xiaoyan
    Wang, Chensheng
    Zhang, Zhi-jie
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES VI, 2019, 11196
  • [48] Mid-infrared hyperspectral imaging of painting materials
    Rosi, Francesca
    Harig, Roland
    Miliani, Costanza
    Braun, Rene
    Sali, Diego
    Daveri, Alessia
    Brunetti, Brunetto G.
    Sgamellotti, Antonio
    OPTICS FOR ARTS, ARCHITECTURE, AND ARCHAEOLOGY IV, 2013, 8790
  • [49] Microscopy with undetected photons in the mid-infrared
    Kviatkovsky, Inna
    Chrzanowski, Helen M.
    Avery, Ellen G.
    Bartolomaeus, Hendrik
    Ramelow, Sven
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [50] Microscopy with undetected photons in the mid-infrared
    Kviatkovsky, Inna
    Chrzanowski, Helen M.
    Avery, Ellen G.
    Bartolomaeus, Hendrik
    Ramelow, Sven
    SCIENCE ADVANCES, 2020, 6 (42):