Diffraction-limited hyperspectral mid-infrared single-pixel microscopy

被引:0
|
作者
Alexander Ebner
Paul Gattinger
Ivan Zorin
Lukas Krainer
Christian Rankl
Markus Brandstetter
机构
[1] RECENDT — Research Center for Non-Destructive Testing GmbH,
[2] Prospective Instruments LK OG,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we demonstrate a wide-field hyperspectral mid-infrared (MIR) microscope based on multidimensional single-pixel imaging (SPI). The microscope employs a high brightness MIR supercontinuum source for broadband (1.55 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}–4.5 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) sample illumination. Hyperspectral imaging capability is achieved by a single micro-opto-electro-mechanical digital micromirror device (DMD), which provides both spatial and spectral differentiation. For that purpose the operational spectral bandwidth of the DMD was significantly extended into the MIR spectral region. In the presented design, the DMD fulfills two essential tasks. On the one hand, as standard for the SPI approach, the DMD sequentially masks captured scenes enabling diffraction-limited imaging in the tens of millisecond time-regime. On the other hand, the diffraction at the micromirrors leads to dispersion of the projected field and thus allows for wavelength selection without the application of additional dispersive optical elements, such as gratings or prisms. In the experimental part, first of all, the imaging and spectral capabilities of the hyperspectral microscope are characterized. The spatial and spectral resolution is assessed by means of test targets and linear variable filters, respectively. At a wavelength of 4.15 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} a spatial resolution of 4.92 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} is achieved with a native spectral resolution better than 118.1 nm. Further, a post-processing method for drastic enhancement of the spectral resolution is proposed and discussed. The performance of the MIR hyperspectral microsopce is demonstrated for label-free chemical imaging and examination of polymer compounds and red blood cells. The acquisition and reconstruction of Hadamard sampled 64 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 64 images is achieved in 450 ms and 162 ms, respectively. Thus, combined with an unprecedented intrinsic flexibiliy gained by a tunable field of view and adjustable spatial resolution, the demonstrated design drastically improves the sample throughput in MIR chemical and biomedical imaging.
引用
收藏
相关论文
共 50 条
  • [21] Towards supercontinuum-driven hyperspectral microscopy in the mid-infrared
    Lindsay, I. D.
    Valle, S.
    Ward, J.
    Stevens, G.
    Farries, M.
    Huot, L.
    Brooks, C.
    Moselund, P. M.
    Vinella, R. M.
    Abdalla, M.
    de Gaspari, D.
    von Wurtemberg, R. M.
    Smuk, S.
    Martijn, H.
    Nallala, J.
    Stone, N.
    Barta, C.
    Hasal, R.
    Moller, U.
    Bang, O.
    Sujecki, S.
    Seddon, A.
    OPTICAL BIOPSY XIV: TOWARD REAL-TIME SPECTROSCOPIC IMAGING AND DIAGNOSIS, 2016, 9703
  • [22] Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser
    Kilgus, Jakob
    Langer, Gregor
    Duswald, Kristina
    Zimmerleiter, Robert
    Zorin, Ivan
    Berer, Thomas
    Brandstetter, Markus
    OPTICS EXPRESS, 2018, 26 (23): : 30644 - 30654
  • [23] Mid-infrared microscopy
    Kato, Z
    Sato, T
    Tanaka, S
    Uchida, N
    Uematsu, K
    AMERICAN CERAMIC SOCIETY BULLETIN, 2002, 81 (12): : 42 - 44
  • [24] Single-pixel fluorescent diffraction tomography
    Stockton, Patrick A.
    Field, Jeffrey J.
    Squier, Jeff
    Pezeshki, Ali
    Bartels, Randy A.
    OPTICA, 2020, 7 (11): : 1617 - 1620
  • [25] Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection
    Meng, Heyan
    Gao, Yuan
    Wang, Xuhong
    Li, Xianye
    Wang, Lili
    Zhao, Xian
    Sun, Baoqing
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [26] Single-pixel coherent diffraction imaging
    Lee, Kanghee
    Ahn, Jaewook
    APPLIED PHYSICS LETTERS, 2010, 97 (24)
  • [27] Single-pixel microscopy with optical sectioning
    Ordonez, Luis
    Lenz, Armin J. M.
    Ipus, Erick
    Lancis, Jesus
    Tajahuerce, Enrique
    OPTICS EXPRESS, 2024, 32 (15): : 26038 - 26051
  • [28] Autofocus Fourier single-pixel microscopy
    Deng, Zilin
    Qi, Shaoting
    Zhang, Zibang
    Zhong, Jingang
    OPTICS LETTERS, 2023, 48 (22) : 6076 - 6079
  • [29] Single-pixel infrared and visible microscope
    Radwell, Neal
    Mitchell, Kevin J.
    Gibson, Graham M.
    Edgar, Matthew P.
    Bowman, Richard
    Padgett, Miles J.
    OPTICA, 2014, 1 (05): : 285 - 289
  • [30] Blind deconvolution for diffraction-limited fluorescence microscopy
    Pankajakshan, Praveen
    Zhang, Bo
    Blanc-Feraud, Laure
    Kam, Zvi
    Olivo-Marin, Jean-Christophe
    Zerubia, Josiane
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 740 - +