Diffraction-limited hyperspectral mid-infrared single-pixel microscopy

被引:0
|
作者
Alexander Ebner
Paul Gattinger
Ivan Zorin
Lukas Krainer
Christian Rankl
Markus Brandstetter
机构
[1] RECENDT — Research Center for Non-Destructive Testing GmbH,
[2] Prospective Instruments LK OG,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we demonstrate a wide-field hyperspectral mid-infrared (MIR) microscope based on multidimensional single-pixel imaging (SPI). The microscope employs a high brightness MIR supercontinuum source for broadband (1.55 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}–4.5 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) sample illumination. Hyperspectral imaging capability is achieved by a single micro-opto-electro-mechanical digital micromirror device (DMD), which provides both spatial and spectral differentiation. For that purpose the operational spectral bandwidth of the DMD was significantly extended into the MIR spectral region. In the presented design, the DMD fulfills two essential tasks. On the one hand, as standard for the SPI approach, the DMD sequentially masks captured scenes enabling diffraction-limited imaging in the tens of millisecond time-regime. On the other hand, the diffraction at the micromirrors leads to dispersion of the projected field and thus allows for wavelength selection without the application of additional dispersive optical elements, such as gratings or prisms. In the experimental part, first of all, the imaging and spectral capabilities of the hyperspectral microscope are characterized. The spatial and spectral resolution is assessed by means of test targets and linear variable filters, respectively. At a wavelength of 4.15 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} a spatial resolution of 4.92 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} is achieved with a native spectral resolution better than 118.1 nm. Further, a post-processing method for drastic enhancement of the spectral resolution is proposed and discussed. The performance of the MIR hyperspectral microsopce is demonstrated for label-free chemical imaging and examination of polymer compounds and red blood cells. The acquisition and reconstruction of Hadamard sampled 64 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 64 images is achieved in 450 ms and 162 ms, respectively. Thus, combined with an unprecedented intrinsic flexibiliy gained by a tunable field of view and adjustable spatial resolution, the demonstrated design drastically improves the sample throughput in MIR chemical and biomedical imaging.
引用
收藏
相关论文
共 50 条
  • [31] Rapid hyperspectral imaging in the mid-infrared
    Kroeger, N.
    Egl, A.
    Engel, M.
    Gretz, N.
    Haase, K.
    Herpich, I.
    Neudecker, S.
    Pucci, A.
    Schoenhals, A.
    Petrich, W.
    BIOMEDICAL VIBRATIONAL SPECTROSCOPY VI: ADVANCES IN RESEARCH AND INDUSTRY, 2014, 8939
  • [32] Photon-limited single-pixel imaging
    Liu, Xialin
    Shi, Jianhong
    Sun, Lei
    Li, Yonghao
    Fan, Jianping
    Zeng, Guihua
    OPTICS EXPRESS, 2020, 28 (06) : 8132 - 8144
  • [33] Mid-Infrared Compressive Hyperspectral Imaging
    Yang, Shuowen
    Yan, Xiang
    Qin, Hanlin
    Zeng, Qingjie
    Liang, Yi
    Arguello, Henry
    Yuan, Xin
    REMOTE SENSING, 2021, 13 (04) : 1 - 18
  • [34] Single-pixel scatter-plate microscopy
    Ludwig, Stephan
    Pedrini, Giancarlo
    Peng, Xiang
    Osten, Wolfgang
    OPTICS LETTERS, 2021, 46 (10) : 2473 - 2476
  • [35] Redundant compressed single-pixel hyperspectral imaging system
    Zhao, Zhuang
    Yu, Ziqi
    Qi, Haocun
    Han, Jing
    Zhang, Yi
    Bai, Lianfa
    Xiong, Fengchao
    OPTICS COMMUNICATIONS, 2023, 546
  • [36] Hyperspectral single-pixel imaging with dual optical combs
    Shibuya, Kyuki
    Minamikawa, Takeo
    Mizutani, Yasuhiro
    Yasui, Takeshi
    Iwata, Tetsuo
    HIGH-SPEED BIOMEDICAL IMAGING AND SPECTROSCOPY: TOWARD BIG DATA INSTRUMENTATION AND MANAGEMENT II, 2017, 10076
  • [37] Single-pixel hyperspectral imaging using Hadamard transformation
    Yi, Qi
    Lim, Zi Heng
    Li Liang
    Zhou Guangcan
    Chau, Fook Siong
    Zhou, Guangya
    MOEMS AND MINIATURIZED SYSTEMS XIX, 2020, 11293
  • [38] OpenSpyrit: an ecosystem for open single-pixel hyperspectral imaging
    Martins, Guilherme Beneti
    Mahieu-Williame, Laurent
    Baudier, Thomas
    Ducros, Nicolas
    OPTICS EXPRESS, 2023, 31 (10) : 15599 - 15614
  • [39] Photon-counting-based diffraction phase microscopy combined with single-pixel imaging
    Shibuya, Kyuki
    Araki, Hiroyuki
    Iwata, Tetsuo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (04)
  • [40] Single-Pixel Infrared Hyperspectral Imaging via Physics-Guided Generative Adversarial Networks
    Wang, Dong-Yin
    Bie, Shu-Hang
    Chen, Xi-Hao
    Yu, Wen-Kai
    PHOTONICS, 2024, 11 (02)